
The Shopping Scanner:

A Worked Example using Perfect Developer

Classification Public
Author D. Crocker, Escher Technologies Ltd.
Issue 1
Date 1 March 2004

1 Introduction
This worked example is based on an assignment presented by Prof. Steve Schneider of Royal
Holloway University of London [1]. I am grateful to Prof. Schneider for allowing me to
publish this adapted version of his idea.

Some supermarkets provide shoppers with a handheld scanner, allowing shoppers to scan
their own purchases and thereby speed up the checkout process. This example concerns the
specification of such a scanner.

The scanner has a barcode reader, an LCD display, and buttons labelled “+”, “-“ and “=”. The
scanner tracks the items in the shopper’s trolley, as follows:

• When the “+” button is pressed, the scanner is activated, the scanned item name and its
price are displayed, and the item scanned is assumed to have been added to the trolley;

• When the “-“ button is pressed, the scanner is activated, the scanned item name followed
by a minus-character and the item price are displayed, and the item scanned is assumed to
have been removed from the trolley;

• When the “=” button is pressed, the number of items and the total price of all items in the
trolley is displayed.

For the purposes of this exercise, we assume the items in the trolley to be of type Good which
is an enumeration containing values such as apple, banana, tunaroll. The barcode scanner
will be assumed to provide a value of type Good. Failure to scan or recognize an item will not
be considered.

The scanner maintains a price list, which stores the price of every item of type Good. All
prices are greater than zero. Prices are defined when the scanner is initialized but are not
affected by pressing the buttons. The total price of all items in the trolley is normally the sum
of the prices of all the items therein. However, a proposed extension of the specification
allows “meal deals” to be defined. A meal deal is a combination of two or more distinct items,
such that no item appears in more than one meal deal. The price of a meal deal is greater than
zero but less than the total price of its constituent items.

Our task is to specify:

• The state variables of the scanner, including the display;

• The methods totalPlus, totalMinus and equals corresponding to the operation that takes
place when the “+”, “-“ or “=” button (respectively) is pressed.

2 Skeleton
We start by writing a skeleton class to contain the specification, together with any ancillary
type declarations we require. Here is such a skeleton:

class Good ^= enum apple, banana, tunaroll, crisps, coke end;

class PriceList ^= ?;

class Scanner ^=
abstract
 ?;
interface
 schema !totalPlus(item: Good)
 post ?;

 schema !totalMinus(item: Good)
 post ?;

 schema !equals
 post ?;

 build{initialPriceList: PriceList}
 post ?;
end;

None of the three schemas has a precondition, because there is nothing to stop the shopper
pressing any of the buttons regardless of the state of the scanner.

3 Scanner state
The scanner state (prior to specifying “meal deals”) comprises:

• The displayed text;

• The contents of the trolley;

• The price list.

For now, we will assume no limitation on the length of the displayed text (which is obviously
unrealistic!), so the displayed text is just a string.

The trolley contents will obviously be some sort of collection, and we should choose the
simplest sort that suffices. A set is unsuitable because the trolley may contain multiple
instances of a particular Good, but a bag suffices.

The price list maps all possible values of type Good to a Price. We will represent a price as a
natural number, which will be the price in pence (or cents etc. depending on your country).

Here is the class skeleton with the state variables defined and some new type definitions:

class Good ^= enum apple, banana, tunaroll, crisps, coke end;

class Price ^= those x: nat :- x > 0;

class PriceList ^= those pl: map of (Good->Price) :- forall g: Good :- g in pl;

class Scanner ^=
abstract
 var prices: PriceList,
 display: string,
 trolley: bag of Good;

interface
 schema !totalPlus(item: Good)
 post ?;

 schema !totalMinus(item: Good)
 post ?;

 schema !equals
 post ?;

 build{!prices: PriceList}
 post display! = “Ready”,
 trolley! = bag of Good{};
end;

We have specified that the price list is initialised from a constructor parameter, and defined
suitable initialisation for the display and trolley.

4 Specifying the schemas
The totalPlus schema is very simple to specify:

 schema !totalPlus(item: Good)
 post trolley! = trolley.append(item),
 display! = item.toString ++ “ “ ++ prices[item].toString;

In specifying totalMinus we need to consider the possibility of trying to remove an item that
is not in the trolley:

 schema !totalMinus(item: Good)
 post ([item in trolley]:

 trolley! = trolley.remove(item),
 display! = item.toString ++ “ “ ++ (-prices[item]).toString,
 []:
 display! = “Item not in trolley”
);

In specifying equals it is convenient to declare a separate function that yields the total price of
all items in the trolley:

abstract
 …
 function totalPrice: nat
 ^= ([trolley.empty]: 0, []: + over (for x::trolley yield prices[x]));

interface
 …

 schema !equals
 post display! = (#trolley).toString ++ “ items, total “ ++ totalPrice.toString;

In defining totalPrice, the return type is nat and not Price because if the trolley is empty, the
total price does not obey the type constraint of type Price. Furthermore, we have to deal with
the case of an empty trolley separately in computing the total, because the over construct
requires a non-empty collection as its operand.

The completed specification is therefore as follows:

class Good ^= enum apple, banana, tunaroll, crisps, coke end;

class Price ^= those x: nat :- x > 0;

class PriceList ^= those pl: map of (Good->Price) :- forall g: Good :- g in pl;

class Scanner ^=
abstract
 var prices: PriceList,
 display: string,
 trolley: bag of Good;

 function totalPrice: nat
 ^= ([trolley.empty]: 0, []: + over (for x::trolley yield prices[x]));

interface
 schema !totalPlus(item: Good)
 post trolley! = trolley.append(item),
 display! = item.toString ++ “ “ ++ prices[item].toString;

 schema !totalMinus(item: Good)
 post ([item in trolley]:

 trolley! = trolley.remove(item),
 display! = item.toString ++ “ “ ++ (-prices[item]).toString,
 []:
 display! = “Item not in trolley”
);

 schema !equals
 post display! = (#trolley).toString ++ “ items, total “ ++ totalPrice.toString;

 build{!prices: PriceList}
 post display! = “Ready”,
 trolley! = bag of Good{};
end;

5 Adding “meal deals” to the specification
To add meal deals to the specification, we need to:

• Add a state component that defines the meal deals available; and

• Modify the totalPrice function to take account of meal deals.

A meal deal comprises a set of Good associated with a Price for the complete meal deal. The
deal price must be less than the sum of the prices of its elements. It will be convenient to
define a function discount that yields the discount provided by a meal deal.

Here is a modified definition of the state, together with the discount method:

class MealDealCombo ^= those x: set of Good :- #x >= 2;

class Scanner ^=
abstract
 var prices: PriceList,
 mealDeals: map of (MealDealCombo -> Price),
 display: string,
 trolley: bag of Good;

 invariant
 forall x, y:: mealDeals.dom:- x = y | x ## y;

 function discount(d: MealDealCombo): int
 pre d in mealDeals
 ^= (+ over (for x::d yield prices[x])) – mealDeals[d];

 invariant
 forall d::mealDeals.dom :- discount(d) > 0;

In declaring class MealDealCombo, we have specified that a meal deal must contain at least
two items. We have expressed the constraint that an item cannot be in more than one meal
deal by way of the first invariant (although we could equally well have used a type constraint,
since it relates to a single abstract variable). Note that the “##” operator means “disjoint”. The
second invariant declares that every meal deal provides a positive discount.

To determine the total price, we observe that any trolley can be broken down into a number of
occurrences of each meal deal plus a remainder, such that the remainder contains no meal
deals. The breakdown is unique because of the constraint that no item may appear in more
than one meal deal. We will start by defining an operator that defines the number of times that
a particular meal deal occurs in the trolley:

function occurrencesInTrolley(d: MealDealCombo): nat

 satisfy d.rep(result) <<= trolley,
 ~(d <<= (trolley – d.rep(result)).ran);

The above definition is an implicit one and it is likely that it will need to be refined to a more
executable form before Perfect Developer can generate code for it. An alternative
specification is:

function occurrencesInTrolley(d: MealDealCombo): nat
 ^= occurrencesIn(trolley, d);

function occurrencesIn(t: bag of Good, d: MealDealCombo): nat
 decrease #t
 ^= ([d <<= t.ran]:
 occurrencesIn(t -- d.rep(1), d) + 1,
 []:
 0
);

Now we can revise our definition of totalPrice:

function totalPrice: nat
 ^= ([trolley.empty]:
 0,
 []:
 (let basicPrice ^= + over (for x::trolley yield prices[x]);
 let discounts ^= + over (for x::mealDeals.dom
 yield discount(x) * occurrencesInTrolley(x)
);
 basicPrice - discounts
);

Note that there is at least one error in the above specifications!

6 Exercises
The following exercises are left to the reader.

6.1 Verification
Use the Verify function of Perfect Developer to check for possible errors in the specification.
For each unproven verification condition, either fix the specification, or construct an informal
proof argument. If possible, provide your argument to Perfect Developer by way of additional
assertions, properties or axioms so as to achieve automated proof of all verification
conditions.

6.2 Adding properties
A supermarket is interested in purchasing scanners but is very worried that it might be
possible to change the price list by pressing the buttons, or that if a customer adds an item and

then removes it, the scanner might fail to restore the trolley to its original state. Add extra
post-assertions and/or properties to verify that these things cannot happen.

6.3 Using inheritance
A manufacturer of scanners wishes to specify and develop software for a BasicScanner
(without meal deals) and a ScannerWithMealDeals. In true object-oriented style, the
manufacturer wishes to achieve re-use by inheritance.

Modify the Scanner specification given earlier to turn it into a BasicScanner specification,
such that the totalPrice method can be overridden in descendant classes. Then define a class
ScannerWithMealDeals that inherits BasicScanner and provides the meal deal functionality.
Ensure that any additional post-assertions and properties that you have added are declared in
BasicScanner and inherited by ScannerWithMealDeals, if they are still applicable.

Hint: you will need to add a confined section to class BasicScanner, containing the
declaration of totalPrice. You may also need to redeclare some of the state variables as
confined functions. You may find it useful to use the super keyword within the new
definition of totalPrice.

6.4 Discount for large total
Specify a scanner that behaves like BasicScanner but provides a 5% discount if the total price
before discount is at least 10 000 pence (or cents etc.). You can again use inheritance to
maximise re-use.

6.5 Multibuy
Many supermarkets operate a “multibuy” discount whereby if the trolley contains a certain
number of items from a family, a discount is applied. This differs from a meal deal in that
there may be just one item in the family, and a specified total number of items belonging to
the family must be present to earn the multibuy discount. For example, a multibuy family
might comprise the members coke and lemonade, and the qualifying number might be 3. For
every 3 cokes and/or lemonades in the trolley, the discount would be applied. Specify a
MultibuyScanner (inheriting BasicScanner) that provides this functionality.

6.6 Limited display size
If the text string written to the display is more than 20 characters long, it will be truncated.
This is obviously undesirable. Constrain the display to hold a maximum if 20 characters. Add
other constraints and adjust the specification to ensure this will never be breached. Verify
your changes.

6.7 Generate a prototype
Generate prototype code for one of your scanner classes in Java and interface it to a graphical
front-end that simulates the buttons and the display. You may find it helpful to modify one of
the sample Java front-ends that Escher Technologies provides (e.g. the one in the
Examples/Graphical subdirectory of a Perfect Developer installation).

7 References
[1]. Formal Methods at Royal Holloway: Perspectives and Pitfalls, Steve Schneider. Keynote
speech of Teaching Formal Methods: Practice and Experience workshop, Oxford Brookes
University, 12 December 2003. Available at http://wwwcms.brookes.ac.uk/tfm2003/ and at
http://www.cs.rhul.ac.uk/research/formal/steve/talks/tfm.ps (March 2004).

End

