

Escher C Verifier

Reference Manual

© 2010 onwards Escher Technologies Ltd. All rights reserved.

Page 1 of 59

Escher C Verifier (eCv) Reference Manual

Version 5.0, September 2011

Disclaimer

The information in this publication is given in good faith but may contain errors and omissions. The contents of
this document and the specifications of eCv are subject to change without notice.

Contents

Getting Started

What eCv is intended for
Principles
Programming languages supported by eCv
Installation and configuration of eCv
Getting ready to use eCv
Setting up your first eCv project
Running your eCv project

Making your source code compatible with eCv

Overview
Keywords
Restrictions
Defining and Using Boolean types
Pointers
Assertions and assert.h
Extensions to the C and C++ languages
Common error messages

Verifying your source

Ensuring validity
Which preprocessor?
Verification
Constructs that are unverifiable

Specifications

General Notes
Type constraints
Function Contracts
Loop specifications
Ghost declarations

Additional eCv Constructs

Page 2 of 59

Additional eCv Declarations
Additional eCv Statements
Additional eCv Expressions

Predefined ghost types, functions and fields

Global ghost variables
Global ghost functions
Ghost fields of array pointer types
Ghost fields of the void pointer type
Ghost fields of array types
Ghost member functions of array and sequence types

Appendix A - Compiler Settings

Appendix B - Type system of eCv

Appendix C - Constructs you may see in proof output

Appendix D - Verification condition types

Appendix E - Language extensions for C99 and C++

Appendix F - Grammar of eCv constructs for C

Appendix G - Differences from MISRA C

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 3 of 59

Introduction to Escher C Verifier
eCv is a tool for verifying programs written in a subset of C or C++. Unlike traditional static analysis tools,
eCv verifies software so that it is mathematically proven not only to be free from run-time errors, but also
to be correct with respect to a well-defined functional specification.

What eCv is intended for
eCv has been designed for developing and verifying critical embedded software. Therefore, eCv requires you to
write your program in a safe, type-strengthened subset of C (based on MISRA-C 2004). Constructs that are not
suitable for use in safety-critical embedded software - for example, dynamic memory allocation and concurrency -
are either not supported at all, or supported only when they are used in certain ways. If you are looking to verify C
programs that are not written with safety in mind, then eCv may not be the tool you are looking for.

Because eCv supports only a safe subset of C, the annotation language of eCv is simpler than the annotation
language of more general tools, making eCv more suitable for ordinary software developers.

Unlike other formal tools for C, eCv provides a mechanism for expressing high-level software requirements and
specifications as well as low-level ones. In support of this, eCv provides abstract data types such as sets and
sequences, together with a wide range of operations on them.

We strongly recommend that you use eCv alongside your compiler when developing your software, rather than
applying eCv only when development is believed to be complete. Indeed, we suggest running code through eCv in
Check mode even before you compile it, to check that your code complies with the eCv safe subset of C. Verifying
previously-developed code with eCv is practical only if the source code was written to a high standard and you are
prepared to make changes to it.

Principles
eCv uses the Verified Design-by-Contract (VDbC) paradigm and a powerful automatic theorem prover (the same
theorem prover as in Escher Technologies' flagship product Perfect Developer). Verified Design-by-Contract builds on
the widely-known design-by-contract principle by adding automated proof that contracts are fulfilled or not. All
possible violations of contract are detected by eCv prior to compilation. This is clearly preferable to the alternative of
hoping that during testing, the test cases used were sufficient to detect all contract violations.

Furthermore, eCv recognizes that many programming language constructs and library functions have implicit
contracts; for example, preconditions that are required to hold in order to avoid undefined or implementation-defined
behaviour. eCv verifies that these preconditions hold, too.

Preconditions and other specification annotations for eCv are expressed using some additional keywords, with
bracketed arguments where needed. When you compile your program using a regular C or C++ compiler, these
additional keywords are defined as macros with empty expansions. This means that the specifications are invisible
to the compiler, which can still translate your source code as if the specifications were not there.

Programming languages supported by eCv
You can write programs for processing with eCv in subsets of C90, C99, or C++, depending on what compiler you
intend to use.

Any program which is a valid eCv program and which is also a valid program in two (or even all three) of those
languages has the same meaning in both (all) of them, provided that the compilers you use implement
implementation-dependent features of C/C++ in the same way. This makes it easier for you to switch from using a
C90 compiler to using a C++ compiler, for example.

Page 4 of 59

Installation and configuration of eCv
Install Escher Verification Studio from the CD or download, ensuring that you include the Escher C Verifier sub-
feature.

Load Escher Verification Studio.

Go to Options → Editor and configure eCv to use your preferred editor. Assuming that your editor supports syntax
highlighting, we recommend that you also adjust the configuration of the editor itself to highlight the additional eCv
language keywords, possibly in a different colour. See here for a list of additional keywords, and the
EditorCustomizations subfolder of the Escher Verification Studio installation for preconfigured syntax definition files
for some popular editors. If you don't already have an editor that supports syntax highlighting and you are running
under Windows, you can find a free editor (Crimson) and an evaluation copy of an inexpensive editor (TextPad) on
the Escher C Verifier installation CD.

Optionally, go to Options → C/C++ Compilers and create an entry for each installed C or C++ compiler that your
code will be compiled with. See Appendix A for some sample compiler configurations. If a compiler supports different
modes (e.g. it can compile in C mode or in C++ mode), or you wish to target more than one platform using the same
compiler, you may wish to set up more than one entry for that compiler.

Getting ready to use eCv
File ecv.h is provided with eCv. You will find it in folder "C:\Program Files\Escher Technologies\Verification Studion 5
\Escher C Verifier\Include" (replace "C:\Program Files" by your program root directory for 32-bit applications, for
example "C:\Program Files (x86)" under 64-bit Windows). You must include a directory that contains ecv.h in your
compiler's file include path and in eCv's include path. Either copy ecv.h into the directory where your own standard
header file is kept, or configure your development environment or build system to include the installed location of
ecv.h in the include file path when you run your compiler(s).

Each C or C++ source file must directly or indirectly #include file "ecv.h". This inclusion must come
before any specifications or other eCv constructs in the source file, and before including other files that
contain specifications or other eCv constructs. We recommend that you #include "ecv.h" right at the beginning
of one of your own header files (for example, you may already have a header file that defines integral types of fixed
sizes taking account of the target platforms), and then #include that file right at the start of every .c file.

Unless you are writing in C++, you also need to set up standard definitions for a Boolean type, or make your existing
Boolean type definition understandable to eCv. See the section on Defining and Using Boolean types. We suggest
that you put these definitions in the same header file in which you #include "ecv.h".

Depending on your source code, eCv may need to know the definitions of types size_t, ptrdiff_t and (unless your
source is C++) wchar_t. These are all defined in the standard header file stddef.h for C90 or C99, or cstddef for
C++. Therefore, we suggest that you #include this file in the header file that includes "ecv.h" too.

Setting up your first eCv project
Command line or Project Manager?

eCv may be used from the command line, or from the graphical user interface provided by the Project Manager of
Escher Verification Studio. To run eCv from the command line (recommended for advanced users only), you will
need to set up a batch file or shell script to invoke EscherTool, optionally passing your C/C++ source code through
your compiler's preprocessor first. The command line syntax for EscherTool is given in the Escher Verification
Studio User Guide. The remainder of this document assumes that you are using the Project Manager.

To create your first project, first load the Project Manager via the Escher Verification Studio shortcut or the file
VerificationStudio.exe. Next, either go to File → New Project or click on the blank-sheet button on the toolbar. If
you are asked what sort of files your project will contain, select C/C++ files. Choose a name and folder location for
your project.

Page 5 of 59

Adding and creating source files

Each project contains a list of the C/C++ source files that you want eCv to process, along with information about
which compiler(s) you will be using. If you have existing C or C++ source files for the project, add them to the project
(use File → Add, or the + toolbar button). If you wish to create new source files, use File → Add New, or the *+
toolbar button. Remember that each source file must (directly or indirectly) #include "ecv.h".

Configuring the project settings

At this stage, the only item that it is essential to configure is your choice of C or C++ compiler. Select
Project → Settings from the menu, or click on the cog icon in the toolbar. In the Compiler box, select one of the
compilers you previously configured, or one of the generic ones that was created for you when Escher C Verifier was
installed. In the Additional include paths box, use the Add button to add the path to file ecv.h, or to your own
header file that includes ecv.h.

Essential annotations

We suggest that if you added existing source files to the project, you go through them and add at least the following
types of annotation before running eCv on them:

l array annotations on array pointer variables, parameters and fields

l null annotations on nullable pointer variables, parameters and fields

l preconditions on any functions that take null-terminated strings as parameters

When you are writing new source, it is best to add these annotations, along with preconditions and other
specifications, as you write the code.

Running your eCv project
Run syntax and semantic checks on all files by pressing the yellow-tick button on the toolbar. You can run checks
on individual files by right-clicking on the file in the Project Manager window and selecting Check.

Resolve any error messages by appropriate changes to source and/or header files. See the chapter on Making your
source code compatible with eCv. Then you can proceed to Verification.

Further instructions on using the Project Manager, together with instructions on running eCv from the command line,
can be found in the Escher Verification Studio User Guide.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 6 of 59

Making your source code compatible with
eCv
Overview
You can configure eCv to assume source code is C90, C99 or C++. The choice is made in the compiler configuration
dialog in the Project Manager, or using the -gl option if you are running eCv from the command line.

The following describes the core C90 language subset supported by eCv, in particular the restrictions placed on C
constructs. Where these restrictions have equivalent or related MISRA-C 2004 rules, we quote the rule numbers.

Not all of the restrictions are rigidly enforced; some will give rise to warning (rather than error) messages if they are
violated, allowing analysis to continue.

For information on constructs from C99 and C++ that eCv supports when you select on of those languages, see
Appendix E.

Keywords
eCv treats some additional words as keywords. These words may not be used as identifiers. Here is a list
of them:

Normal
keyword

Underlying
keyword

Where used See section

any _ecv_any 'any' expression Collections
array _ecv_array Indicates that a pointer refers to an array array
assert _ecv_assert Assertion statement assert
assume _ecv_assume Assume declaration assume
bool Boolean type Boolean types
decrease _ecv_decrease Declares a loop variant decrease
exists _ecv_exists 'exists' expression Quantified

expressions
false Boolean false value Boolean types
forall _ecv_forall 'forall' expression Quantified

expressions
ghost _ecv_ghost Declares that a declaration is for use in

specifications only
ghost (see also
Ghosts)

holds _ecv_holds 'holds' expression Disjoint
expressions

idiv _ecv_idiv An integer division operator that always rounds
down

Binary operators

imod _ecv_imod An integer modulus operator that always yields a
non-negative result

Binary operators

in _ecv_in Element-in-collecton operator Binary operators
integer _ecv_integer Unbounded integer type ghost
invariant _ecv_invariant Declares a structure invariant invariant
keep _ecv_keep Declares a loop invariant keep
let _ecv_let Names a subexpression so you can refer to it in a

let

Page 7 of 59

Notes on keywords

If you must use one of the keywords in the above table as an identifier in your program (perhaps because a third-
party library header file uses it) then there is a workaround. Apart from bool, false, true and wchar_t, all the
reserved words not beginning with _ecv_ are defined in file ecv.h as macros equivalent to the corresponding _ecv_
versions. After you #include "ecv.h" at the start of your program, you may #undef the keyword. So if you
need to use e.g. result as an identifier, you can #undef result, and then subsequently use _ecv_result
instead of result in eCv specifications.

Note: if you use keywords beginning with _ecv_ directly, then this may result in the column numbers in eCv error,
warning and informational messages being incorrect (see later in this chapter).

eCv also places a number of identifiers beginning with _ecv_ in the global namespace, therefore you should not use
identifiers beginning with _ecv_ in your source code.

Although we have listed wchar_t as a reserved word, if your source code is C90 or C99 (not C++) then you are
allowed to use a typedef in a standard header file to define wchar_t with its usual meaning, i.e. the type of a wide
character literal.

If you are using any of the keywords {bool, true, false} to define your own Boolean type, you should make your own
definitions conditional - see here.

larger expression

maxof _ecv_maxof Yields the maximum value in a type Type operators
minof _ecv_minof Yields the minimum value in a type Type operators
min_sizeof _ecv_minof Yields the minimum value that sizeof could yield

for the same type
Type operators

not_null _ecv_not_null Cast a nullable pointer to a non-nullable pointer not_null
null _ecv_null Declares that a pointer is nullable Nullable and non-

nullable pointers
old _ecv_old Selects the original value of an expression instead

of the final or current value in a postcondition, loop
invariant or loop variant

old

out _ecv_out Indicates that a pointer parameter is used only to
pass a value back to the caller

Pointers as
function
parameters

over _ecv_over 'over' expression Collections
pass _ecv_pass Null statement pass
post _ecv_post Declares a postcondition post
pre _ecv_pre Declares a precondition pre
result _ecv_result Refers to function result in a postcondition post
returns _ecv_returns Declares a function return value returns
some _ecv_some Indicates any object(s) of a specified type
spec _ecv_spec Declares that a function prototype overrides

another similar one
that _ecv_that 'that' expression Collections
those _ecv_those 'those' expression Collections
true Boolean true value Boolean types
wchar_t Wide character type below
writes _ecv_writes Declares nonlocal variables that a function writes

to
writes

value _ecv_value Refers to the value of the structure in a structure
invariant, similar to (*this) in C++

yield _ecv_yield 'for..yield' and 'for..those..yield' expressions Collections
zero_init _ecv_zero_init Yields the value of a type obtained by setting all

bits to zero
Type operators

Page 8 of 59

Restrictions
eCv places the following restrictions on using of the C language.

Tokens

eCv treats ":-" as a single token, rather than the two tokens ":" and "-". This means that conditional expressions
such as the following, will not be parsed correctly:

c ? e :-f
c ? e :--x

The fix is simple: ensure that there is at least one space between the colon and the minus-sign, as in the following:

c ? e : -f
c ? e : --f

Declarations

l In any scope, you may not use the same identifier as more than one of:

¡ the name of a single variable, function or parameter, and/or the name of one or more struct or union
fields

¡ a struct name

¡ a union name

¡ a typedef name

¡ an enum name

So, at any location in the program, a given identifier that does not immediately follow a period has exactly one
meaning. (MISRA 5.6)

l You may not declare an identifier in an inner scope so that it hides a declaration of the same identifier in an
enclosing scope. This includes parameter names in prototypes [because prototypes may contain
specifications that refer to the parameters]. (MISRA 5.2)
Advice: avoid declaring static or extern variables/functions with short names that you may also want to
use as parameter names.

l eCv currently requires the names of parameters in function prototypes to match exactly with the
corresponding parameter names in the function definition. (MISRA 16.4)

l Storage-class specifiers must be placed before type qualifiers. For example, you may use extern const ... or
static volatile ... , but not const extern ... or volatile static

l You may not declare a struct, union or enum within a parameter list.

l You may not declare a struct, union or enum within the operand of sizeof.

l You may not declare a struct, union or enum within the type-part of a cast expression.

l Variables must be explicitly typed (i.e. no default of int). (MISRA 8.2)

l eCv currently requires that all types declared are also defined. (MISRA 18.1) So if your source file refers to
type struct Foo * then type Foo must be defined somewhere. If necessary, declare a dummy definition,
like this:

#ifdef __ECV__
 struct Foo { int x; }
#endif

This dummy definition includes a member so that eCv cannot infer that all instances of Foo are equal.

l When initializing arrays of arrays, arrays of structs, structs containing arrays etc. each part of the initializer
list for any array or struct must be enclosed in braces. (MISRA 9.2)

Page 9 of 59

l When you declare a variable with static or extern linkage, if the type of the variable does not have a valid
default-initialized value, then the declaration must include an initializer. For example, if you declare a static
variable with non-nullable pointer type, or with struct type where the struct contains a field with non-nullable
pointer type, then you must provide an initializer. Similarly, if you declare a static array whose element type
does not have a valid default initial value, then you must provide an initializer for all the elements of the array.

Pointers summary

l A pointer variable or parameter may only be given the value 0 if it has been declared nullable. See later
section on pointers and arrays.

l Pointer variables in static data that are not declared nullable must have initializers.

l Pointers to arrays are distinguished from plain pointers (i.e. pointers to single values) by the keyword array
after the * in the corresponding declaration. See later section on pointers and arrays.

l A plain pointer may not be indexed or have any other operator applied to it other than * or == or != . (MISRA
17.1, 17.3)

l A function parameter of pointer type that is used only to pass a value back to the caller should be flagged with
the keyword out.

Characters and character types

l eCv treats plain char as distinct from both signed char and unsigned char (like C++). eCv does not perform
implicit type conversions to or from plain char. (MISRA 6.1, 6.2)

l The type of a character literal in eCv is char (as in C++), not int (as in C).

l eCv treats wchar_t as a separate type distinct from all other types (like C++). eCv does not perform implicit
type conversions to or from wchar_t.

l The type of a wide character literal in eCv is wchar_t.

Types and type conversions

l eCv does not perform implicit type conversions between integral types and floating-point types. Any such
conversion required must be done using an explicit cast. (MISRA 10.1)

l eCv generates a warning where there is an implicit type conversion and the destination type cannot contain all
the values of the source type. (MISRA 10.1, 10.2) Exception: if extended MISRA checking is not enabled,
eCv will not warn if an integer literal having a signed type is implicitly converted to an unsigned type with the
same or a larger number of bits, because an integer literal is non-negative, so there is no risk that it will not fit
in the type.

l Where a string literal is converted implicitly into a pointer to the first character (i.e. whenever it is not used as
an array initializer or the operand of sizeof), its type in eCv is const char* array (i.e. const char* as in C++,
with the eCv array modifier), not char* as in C. Note the const. This means that you can't modify a string
literal (which would in any case amount to "undefined behaviour" in the C standard), or pass a string literal to
a function that takes a char* (without the const) parameter.

l Enum types are treated as separate types (as in C++), not as a shorthand for integers. Enum types can be
converted to integers implicitly. Conversion from integral types to enum types can be done using an explicit
cast - there is no implicit conversion. You cannot use the operators ++, -- or the assigning operators +=, -=
etc. on enum types (they are normally allowed by the C language standards but not by the C++ standard).

l eCv uses a distinct Boolean type called bool, and treats the result of evaluating a relational operator as
having type bool. The condition part of a conditional expression or if-statement, and the while-expression in a
while, do...while or for loop must have type bool. (MISRA 13.2) If you already define your own Boolean
type, see here for how to make eCv understand it.

l A cast expression must do one of the following:

¡ Convert between two integral type, two floating-point type, or one integral type and one floating-point
type (note that plain char and wchar_t are not treated by eCv as integral types)

¡ Convert from char to signed char or unsigned char

Page 10 of 59

¡

¡ Convert from an integral type to char

¡ Convert between wchar_t and an integral type

¡ Convert between an enumeration type and an integral type

¡ Convert between bool and an integral type

¡ Convert from [const] [volatile] T1* [array] [null] to [const] [volatile] T2* [array] [null], where T1 and
T2 are the same type or one of them is void, and elements in [] are optional. There are some further
restrictions: you can't cast from a const-pointer to a non-const-pointer, and you can't cast from a plain
pointer to an array pointer.

Some cast-expressions other than the above are accepted by eCv but provoke a warning that verification of
the program may not be sound.

Functions

l Function declarations must adhere to the ANSI format (not the old K&R format) and have explicit return type.
(MISRA 8.2)

l A function signature of the form T f() is interpreted as having no parameters, rather than unspecified
parameters; i.e. it is treated as if it were T f(void).

l Variable length argument lists are not supported. (MISRA 16.1)

l The body of a function with a non-void return type may not fall through to the end of the function (i.e. it must
return a defined value). (MISRA 16.8)

l Return statements inside a function with a non-void return type must include a returned value. Return
statements inside a function with void return type must not include a returned value. (MISRA 16.8)

l A function that writes to non-local variables (other than only to variables directly pointed to by any parameters
of non-const pointer types) must declare this in a writes clause. See the section on function contracts for
more details.

Arithmetic operations

l The unary-minus operator may not be applied to an operand of unsigned type. (MISRA 12.9)

l eCv allows you to use mixed signed/unsigned operands in arithmetic operators and comparisons, but it will
both issue a warning and generate verification conditions to ensure that the implicit type conversion(s) involved
do not lose information. We recommend adding an explicit type conversion, which will suppress the warning.
(MISRA 10.1)

l You cannot mix integral and floating operands in arithmetic expressions. This is a consequence of the fact
that eCv does not provide implicit conversions from integral to floating-point types. If you want to mix integral
and floating operands, you will have to cast the operand having integral type to a suitable floating type.
(MISRA 10.2)

Bit operations

l The underlying type of the operands of binary operators & | ̂<< and >> and unary operator ~ must be
unsigned. (MISRA 12.7)

Switch statements

l In a switch-statement, the end of one case may not fall through to the next case, i.e. it must end in break,
return, continue or goto. (MISRA 15.2) However, you can have multiple case labels on a single statement.

l The case-labels of a switch statement must be placed on statements directly within the compound statement
that forms the switch body. (MISRA 15.1) They may not be placed on nested statements.Example:

switch(i) {
 case 1: /* ok */

Page 11 of 59

 case 2: /* ok */
 ...
 break;
 {
 case 3: /* error, case label is inside another statement */
 default: /* error, case label is inside another statement */
 ...
 break;
 }
 case 4: { /* ok */
 ...
 break;
 }
}

l The compound statement that forms the body of a switch statement may not contain declarations unless they
are inside a further compound statement. Example:

switch(i) {
 int temp1; /* error, declarations not allowed here */
 case 1: {
 int temp2; /* ok, declaration is inside a compound statement */
 ...
 }
 break;
 default:
 int temp3; /* error, declarations not allowed here even in C99 or C++
mode */
 ...
 break;
}

Other restricted constructs

l The operand of sizeof may not be a character literal or enumeration constant. The reason is that C and C++
give different results for this.

l You may not use the unary & operator to take the address of a field of a union or any sub-part thereof.

l eCv generates a warning if an unsuffixed integer literal is implicitly unsigned. (MISRA 10.6)

l The offsetof(...) macro is not supported, because it is defined in terms of unsupported type conversions.
(MISRA 20.6)

Side effects

l The operand of sizeof() may not have side effects. (MISRA 12.3)

l Any given variable may be read or written at most once between each pair of consecutive sequence points;
except that a variable may be read as part of the calculation of the new value that is to be written to it in an
assignment expression. (MISRA 12.2)

l At most one volatile variable may be read or written, and only once, between each pair of consecutive
sequence points. (MISRA 12.2)

l The three operands of a conditional expression may not have side effects. [this restriction may be relaxed in a
future version of eCv]

Unsupported constructs

l The goto statement is not supported. (MISRA 14.4) [this restriction may be relaxed in a future version of
eCv]

l Calls to the setjmp and longjmp functions/macros are not supported. (MISRA 20.7)

Additional restrictions enforced by the verifier

l When any of the operators < <= > >= is used with pointer operands, they must be array pointers that point
into the same array. (MISRA 17.3)

Page 12 of 59

into the same array. (MISRA 17.3)

l The value assigned to any entity of an enum type must be one of the named members (e.g. you may not cast
an out-of-range integer to an enum). One consequence of this is that if you have any static variables of
enumeration type, either the enumeration type must have a named member whose value is zero, or the static
variable must have an initializer.

l A member of a union may not be read unless the last assignment to the union was done via the same
member. So unions cannot be used to convert between types or to pack or unpack data structures. Their sole
function must be to represent data of different types at different times or in different situations.

l All variables must be initialized before use. (MISRA 9.1)

l Every array pointer value (including any intermediate values in pointer arithmetic expressions) must address
an element that is within the bounds of an array, or be one past the last element of an array, or be null (if it is
declared nullable).

l Every access to an array element (whether by indexing or by dereferencing) must be within the bounds of the
array.

l Null pointers may not be dereferenced.

l In any type conversion, whether explicit or implicit, the destination type must be able to hold the value being
converted without loss of information or a change in the interpretation of the value; except that for conversions
from floating-point types to integral types, the foregoing applies only to the integral part after truncation or
rounding of the fractional part.

l If the left operand of the right-shift operator has a signed type, its value may not be negative.

l The result of any integral arithmetic operation or left-shift operation must be representable in the result type
without any modulo-N wrap round, even if the operands are unsigned.

l When using the integer / and % operators, the second operand must be positive.

l The right operand of a shift operator must lie between zero and one less than the number of bits in the
promoted operand.

Defining and Using Boolean types
C90 does not provide a Boolean type. C99 provides a boolean type called _Bool, and if you #include "stdbool.h"
then it is also called bool and the corresponding literals are called false and true. C++ provides a Boolean type,
calling it bool and the corresponding literals false and true.

eCv follows the C++ standard in order to provide stronger typing than C90. Therefore, in order that you can use the
Boolean type in your code in a manner that your compiler will accept, you should do one of the following:

(a) Add the following to your standard header:

#if !defined(__ECV__) && !defined(__cplusplus)
 /* we're neither running under eCv nor compiling as C++, so we need to
define the Boolean type */
 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
 /* we're compiling as C99 so use the definition in stdbool.h */
 #include <stdbool.h>
 #else
 /* compiling as an older version of C */
 /* define the Boolean type ourselves in a manner compatible with C99
and C++ */
 typedef enum { false = 0, true = 1 } bool;
 #endif
#endif

and then use the names bool, false and true in your code.

(b) If you are already using some names other than {bool, false, true} to denote Boolean types and values, then do
something like thefollowing (this example assumes that you are using BOOL_T, FALSE and TRUE):

#if defined(__ECV__)
 typedef bool BOOL_T;
 #define FALSE (false)

Page 13 of 59

 #define TRUE (true)
#else
 /* insert your own code here, e.g. the following */
 /* typedef enum { FALSE = 0, TRUE = 1 } BOOL_T; */
#endif

Pointers
Pointers in C and C++ can be troublesome in several ways:

l Zero (i.e. NULL) is an allowed value of every pointer type in C and in C++. In critical systems, while we may
occasionally want to allow null pointers, for example in the link field of the last element of a linked list, more
usually we want to disallow null pointers. Verification requires that anywhere we use the * or [] operator on
a pointer, we can be sure that it is not null.

l C and C++ do not distinguish between pointers to single variables and pointers to arrays. So, where we have
a parameter or variable of type T*, we can’t tell whether it is supposed to point to a variable or an array. If it
points to a single variable, then we mustn’t do pointer arithmetic or indexing on it. The verifier must be able to
check this.

l Array parameters in C/C++ are passed as pointers. Aside from the problem that we can’t distinguish array
pointers from pointers to single variables, we also have the problem that there is no size information contained
in an array pointer.

l Anywhere we use pointers to mutable data, there is the possibility of aliasing. In other words, there may be
more than one pointer to the same data. The verifier needs to take account of the fact that changes to data
made through one pointer may affect the values subsequently read through another pointer.

Nullable and non-nullable pointers

By default, eCv assumes when you declare a variable, parameter or function return value as having a pointer type,
the value zero (or NULL) is not allowed. If you wish to allow this value, you must say so by using the null qualifier in
the declaration. Here's an example:

void foo(int * p, int * null q) { ... }
...
int a = 1;
foo(NULL, &a); /* error, parameter p of foo() is not nullable */
foo(&a, NULL); /* ok, parameter q was declared nullable */

Array pointers

eCv requires array pointers to be qualified with the keyword array. Here’s an example:

void copyError(const char * array msg, char * array dst, int dstSize)
{ ... }

The presence of the array keyword tells eCv that the msg and dst parameters point to arrays rather than single
values. If you leave it out, then eCv will not allow you to perform indexing or any other sort of pointer arithmetic on
those parameters. When you compile the code, array becomes a macro with an empty expansion, so your standard
C or C++ compiler doesn’t notice it.

In this example, we’ve passed the size of the destination buffer in a separate int parameter, so that the code can
limit how many characters it writes. However, in writing specifications, we often need to talk about the size of the
array that a pointer points to even when we don’t have it available in a separate parameter. eCv treats an array
pointer like a struct comprising three values: the pointer itself, the lower bound (i.e. index of the first element), and
the limit (i.e. one plus the index of the last element). To refer to the lower bound or limit of dst we use the syntax
dst.lwb or dst.lim respectively. We also allow dst.upb (for upper bound), which is defined as (dst.lim – 1). Of course,
you cannot refer to these fields in code, but you can use them in specification constructs (such as preconditions,
invariants, assertions) as much as you like. We call them ghost fields because they aren’t stored.

For example, let’s specify that when the copyError function is called, it assumes that dst points to an array with at
least dstsize elements available. Here’s how we can specify that:

Page 14 of 59

void copyError(const char * array msg, char * array dst, int dstSize)
pre(dst.lim >= dstSize)
{ ... }

An array pointer in C/C++ may only address the first element of an array, or one-past-the-last element, or any
element in between. If p addresses the first element of an array of N elements, then p.lwb == 0 and p.lim == N. If it
addresses one-past-the-last element, then p.lwb = -N and p.lim = 0. So p has implicit invariant p.lwb <= 0 && p.lim
>= 0.

Within the body of copyError, eCv will attempt to prove that all accesses to msg and dst are in bounds. For example,
the expression dst[i] has precondition dst.lwb <= i && i < dst.lim. Also, wherever copyError is called, eCv will
attempt to prove that the precondition holds. So anywhere that buffer overflow is possible, there will be a
corresponding a failed proof. If all the proofs succeed, and provided that no function with a precondition is ever called
by external unproven code, we know that buffer overflow will not occur.

As with plain pointers, eCv assumes that array pointers may not take the value zero (i.e. NULL) unless you qualify
them with the null keyword. When you qualify a pointer declaration with both array and null, it does not matter
which order you place the qualifiers in; however we suggest using array null rather than the other way round.

When declaring a function parameter that accepts an array of elements of some type T, both C and C++ allow the
type to be declared as T[] as an alternative to T*, with the same meaning. eCv also allows T[] as the type of a
parameter to be qualified with null; so declaring a parameter with type T[] null has the same meaning as declaring
it with type T* array null.

The not_null operator

Sometimes you may have an expression that has a nullable pointer type, but you know that its value is not null and
you wish to use it in a context that requires a non-nullable pointer. You can do this using the not_null construct.

The expression not_null(pointer-expression) yields the value of pointer-expression (which must have
nullable pointer or nullable array pointer type) as a non-nullable pointer or non-nullable array pointer, asserting that it
is not null. This is equivalent to a cast from the nullable type to the non-nullable type, but avoids your C compiler or
other static checker perhaps issuing a warning about a redundant cast. It also makes it clear that you are just
asserting non-nullness, rather than trying to do a more general type conversion. eCv will generate a verification
condition that pointer-expression is not null.

If you use an expression whose type is a nullable pointer type in a context where a non-null pointer is required, eCv
will assume an implicit not_null(...) operation around the expression, and warn you that it has done so.

Pointers as function parameters

Parameters of pointer type are often used to pass values results between functions and their callers. When you
declare a parameter of a non-const pointer type, eCv normally assumes that when you call the function, it both reads
and writes the value that is pointed to. Therefore, if you take the address of a variable and then pass that address to
a function, you must initialize that variable first. The function is permitted but not obliged to update the variable by
writing through the pointer.

You can change this behaviour by flagging a parameter with the keyword out at the start of its declaration. This
indicates to eCv that the pointer parameter is used only to pass a value back from the function. When you take the
address of a variable and then pass that address as the actual value of an out parameter, you do not need to
initialize the variable first. However, a function is obliged to write through all its pointer parameters that have been
flagged as out parameters.

Here is an example:

void foo(int *p, out int *q, out int *r) {
 p += 1; /* ok */
 q += 1; /* error, out-parameter q used before it has been
initialized */
 return; /* error, function must initialize out-parameter r before
returning */
}

Page 15 of 59

...
int a, b, c, d;
foo(&a, &b, &c); /* error, 'a' has not been initialised */
foo(&b, &c, &d); /* ok, 'b' was initialized by the previous call to foo
*/

Only parameters of non-const pointer type may be flagged out.

Assertions and assert.h
If you use assertions in your program and #include "assert.h" in your source file, we suggest that you make this
inclusion conditional like this:

/* #include "ecv.h " somewhere before the following */
#ifndef __ECV__
#undef assert /* remove eCv's definition */
#include "assert.h"
#endif

eCv will then treat your assertions as eCv assertion statements (see assert) and try to prove they are true.

If you do not make the inclusion conditional, then the definition of assert in file assert.h may override the definition of
assert in file ecv.h. If the DEBUG macro is defined when you run eCv, then your assertions will typically be
expanded to code that performs I/O if the assertion fails. eCv will try to verify this code and will report errors if it
modifies variables that were not declared in the writes-clause of the current function.

Extensions to the C and C++ languages
eCv supports the following extensions to the C and C++ languages as defined in the ISO standard documents:

l Comments beginning with // and ending at end-of-line are permitted even in C90 mode, if your compiler's
preprocessor supports them. Comments of this form are part of the C99 and C++ language standards.

l Integer literals in binary format beginning with 0b or 0B are supported. The type of a binary integer literal is
determined using the same rules as for hexadecimal integer literals. Note that eCv generates a warning if an
undsuffixed integer literal is implicitly unsigned.

l The placement syntax for variables supported by the HiTech PICC compilers and many other embedded C
compilers are supported.

Many C and C++ compilers support additional extensions. Where these extensions are implemented using
additional keywords (possibly followed by a bracketed argument list), it is usually possible to define these keywords
as null macros when processing with eCv, so that eCv does not see those extensions and can process the source
file. File eCv.h already contains a number of these macro definitions.

Common error messages and what to do about them
Sometimes you may find that your C compiler accepts your source code, but eCv does not. Here are some of the
most common eCv error messages that you may see under these conditions, and what they mean.

Error! Incorrect syntax at ... Assuming that a regular C compiler accepts your source code, then this
means one of the following:

l You have used an eCv reserved word as an identifier. You must either rename the identifier, or rename the
keyword. To make this sort of error easier to spot visually, we recommend that you use an editor that
supports syntax highlighting, and add all the eCv keywords to its keyword list for C.

l You have declared the types of function parameters using the old K&R syntax. Use the ANSI/ISO syntax
instead.

l (when this error occurs at the keyword case or default) You have written a switch statement that does not

Page 16 of 59

l
conform to the format supported by eCv. Case labels must appear directly in the body of the switch
statement, not nested inside further compound statements.

l You have included a declaration directly in the body of a switch statement.

l You have followed the colon character in a conditional expression directly by a minus-sign. Resolve this by
inserting a space character after the colon.

Error! Incorrect syntax at token '_ecv_pre'. This can occur if you have extra brackets around the
function declarator, e.g.

int (foo(int arg)) pre arg > 0 { ... }

The fix is either to remove the extra brackets:

int foo(int arg) pre arg > 0 { ... }

or to include the precondition (and any other specifications) inside the brackets:

int (foo(int arg) pre arg > 0) { ... }

Error! Cannot find declaration of class 'size_t'. This will occur if your program uses the C
sizeof keyword, but you haven't included any standard header file that defines size_t. eCv needs this definition
so that it knows exactly what type a sizeof expression yields. The fix is to #include stddef.h (or some other
header that correctly defines size_t) in your source file.

Error! Cannot find declaration of class 'ptrdiff_t'. This will occur if your program subtracts
one pointer from another, but you haven't included any standard header file that defines ptrdiff_t. eCv needs this
definition so that it knows exactly what type a pointer difference expression yields. The fix is to #include stddef.h
(or some other header that correctly defines ptrdiff_t) in your source file.

Error! No binary operator '==' defined between types 'T*' and 'int' (for some T, where the
integer operand is literal zero, and where == can also be !=). This normally indicates that the variable or parameter of
type T* should have been declared nullable, i.e. T* null instead of just T*.

Error! No binary operator '+' defined between types 'double' and 'int' (for '+' or some
other arithmetic operator). eCv does not support mixed-mode arithmetic. Cast the integral operand to double or
some other suitable floating-point type.

Error! No globals or current class members can match 'result'. This occurs when you use an
expression like 0..result in a specification and you are using your compiler's own preprocessor. The reason is
that the preprocessor treats 0..result as a single pp-number token, so it doesn't recognise result as a macro to
be expanded. To fix this, put a space between 0 and .. or between .. and result, or use (0) instead of 0, or
use (result) instead of result.

Line and column coordinates in error and warning messages

If your code uses either an eCv specification macro such as pre or one of your own macros, and eCv detects errors
either in the code resulting from the macro expansion or in code that follows the macro and its arguments on the
same line, then the line/column coordinates that eCv provides in the error message may to be incorrect. This is
because eCv sees the code after macro expansion.

If you put specification macros and their actual parameters all on the same line, and you do not use any other
macros on that line, then the line number should be correct. If you are using the eCv preprocessor or your compiler's
preprocessor preserves white space, and you use the standard eCv specification macro names, then the column
numbers should also be correct.

If you use keywords starting with _ecv_ directly, then the column number of any message that refers to a construct
after that keyword but on the same line will be incorrect. This is because when eCv calculates the column number in
the original source file, it assumes that any keyword starting with _ecv_ was generated by expanding the
corresponding keyword without the _ecv_ prefix.

Page 17 of 59

If you put macro parameters on more than one line, then your preprocessor may expand the macro such that
everything is on one line. In that case, any error messages relating to code or specifications in the macro
parameters will have a line number that relates to the source line on which the macro name appeared; and the
column number may be somewhat higher than the number of columns in that line. For this reason, we suggest that,
when declaring specifications, you keep each specification and its arguments on the same line, wherever possible.
For example, don't use:

pre(a >= 0;
a < 10)

Instead, use either:

pre(a >= 0; a < 10)

or:

pre(a >= 0)
pre(a < 10)

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 18 of 59

Verifying your source
Ensuring that verification is valid for your target
environment
You must make sure that eCv and your compiler interpret the source code in the same way. In particular:

l eCv assumes (and does not check) that header files are always parsed in the same #define environment,
i.e. when parsing a set of files, it need only consider one instance of each header file. So don't use #ifdef,
#ifndef or #if inside a header file to make it do different things depending on which file is including it.

l eCv only sees your program in a state in which __ECV__ is defined. So don't make parts of your program
conditional on whether __ECV__ is defined, unless you really know what you are doing!

l eCv passes the search paths you configure in your project and in eCv's global compiler settings to the
preprocessor; project-specific paths first, then compiler-specific ones. Make sure that when you actually
compile the code, the compiler uses exactly the same search path order, in case there are files with the
same name in different places on the search path.

l Some compilers define additional macros automatically, and most allow additional macro definitions to be
provided on the compiler command line. Add these additional macro definitions to the project settings, so that
eCv sees the same set of macro definitions as the compiler (plus the definition of __ECV__, which is added
automatically when you run eCv).

l The meaning of a C program, and therefore the verification conditions that eCv generates, depends on various
compiler/platform details, such as the sizes of the various integral types and the behaviour of integer division.
You must ensure that the details you have configured in the eCv Project Manager for the C/C++ compiler you
have told it you are using match the actual compiler you use. If you intend to compile for more than one
platform, you must run eCv verification separately for each platform, unless you know that the configuration
parameters are the same for all of them. You can set up multiple configurations in a single project to allow for
using different compilers.

Note: in order to determine the maximum and minimum values that can be stored in variables of the integral types of
C, eCv assumes that your compiler/platform uses twos-complement representation of signed integral types, and
plain binary representation of unsigned integral types. If this is not the case, then eCv may give incorrect results.

Which preprocessor?
When you verify your source files, you can use either eCv or the target compiler to preprocess them, depending on
how you have configured the chosen C or C++ compiler in the Project Manager. If you choose to let eCv preprocess
them, you can use the standard header files supplied with eCv, or you can attempt to use the standard header files
supplied with your compiler. Here are some guidelines to help you choose:

l The easiest way to get started is to use eCv to preprocess the source and use the header files supplied with
eCv. If you wish to use your own compiler to preprocess the source, you must configure the Project Manager
to do this for your chosen compiler (use Options → C/C++ Compilers).

l Although it is possible to use eCv to preprocess files but pick up the header files supplied with your compiler,
this may be problematic for two reasons. First, compiler-supplied header files may use language extensions
that cause eCv to fail to parse the file (although it may be possible to define the associated keywords as null
macros so that eCv ignores them). Second, header files supplied with some compilers (notably gcc) depend
on a large number of macros that the preprocessor normally defines, and you need to accurately replicate
these macro definitions in order to ensure the correct behaviour.

l If you use eCv to preprocess source files and you use the eCv standard header files, then only definitions in
the C standard library will be available. If your software depends on non-standard definitions in the header files
supplied with your compiler, these will not be available.

Page 19 of 59

l If you use your own compiler to preprocess the source, then you can use thr platform check program supplied
with eCv to check that the type sizes you have configured in the eCv compiler parameters match the values in
the compiler-supplied limits.h file.

l If your compiler's preprocessor does not follow the ISO standard, or if you are using features whose behaviour
is undefined (e.g. multiple # and/or ## tokens in a single macro body), then the behaviour of the eCv
preprocessor and your compiler's preprocessor may differ, so that the code verified by eCv is not the same as
the code seen by your compiler.

Verification
When you have resolved any errors (and, optionally, warnings) produced by eCv when you Check your program,
press the green-tick button on the toolbar to verify your source. Expect a lot of verification warnings if you haven't yet
annotated your source code with specifications. Resolve verification errors by adding preconditions and other
specifications.

The sort of specifications you need to add depend on what you want to verify:

l For functions that you want to verify, you need to write at least preconditions, writes-clauses and loop
invariants. You may also need to write postconditions, if they are called by other functions that you want to
verify.

l For functions (including library functions) that you do not want to verify at the present stage, but which are
called from functions that you do want to verify, you need to write preconditions, writes-clauses, and
sometimes postconditions.

l You may also want to write assertions and postconditions to describe properties you expect to hold.

l You need only write loop variants where you wish to prove that a loop terminates.

You can run verification on individual files by right-clicking on the file in the Project Manager window and selecting
Verify.

Note that you don't always have to run a Check before running a Verify, since Verify will start by checking anyway.

Constructs that are unverifiable or compromise
verification
eCv is unable to verify code that contains certain constructs as detailed below. Where the integrity or verification
results may be compromised, eCv will generally issue a warning message.

Casts between pointer types

eCv assumes strong typing, therefore it cannot verify code that contains casts or implicit conversions between
pointers to different types. The exception is that conversions to void* do not make code unverifiable.

Casting away const

eCv assumes that variables annotated by const are immutable. Casting away const violates this assumption.
However, if you cast away const so that you can pass a pointer to a function that takes a non-const parameter, and
the function does not actually write through that parameter, validity of eCv verification is not affected.

Casting away volatile

eCv tracks the value of non-volatile variables, but not the values of volatile variables. If you cast a volatile-qualifieed
pointer to a non-volatile-qualified pointer, then the variable tracking performed by eCv will not function correctly, and
the integrity of verification is compromised.

Calls to memcpy and memset

Page 20 of 59

eCv can only reason about calls to the standard library function memcpy when one of the following is true:

l The third parameter is zero;

l The first two operands were originally pointers of type T* (prior to being converted to void*) and the third
parameter is equal to sizeof(T);

l The first two operands were originally pointers of type T* array (prior to being converted to void*), they each
point to the start of an array, and the third parameter is an exact multiple of sizeof(T).

eCv can only reason about calls to the standard library function memset when one of the following is true:

l The third parameter is zero;

l The first operand was originally a pointer of type T* (prior to being converted to void*), the second parameter
is zero, and the third parameter is equal to sizeof(T);

l The first operand was originally a pointer of type T* array (prior to being converted to void*) and it points to
the start of an array, the second parameter is zero, and the third parameter is an exact multiple of sizeof(T).

In other cases, the validity of verification results is not affected, but expect eCv to find some veriication conditions
unprovable.

Note that using memset to initialize objects that include pointers and/or floating-point fields is neither
portable nor verifiable by eCv. This is because the bit patterns used to represent null pointers and floating-point
zeros are implementation-defined, not necessarily all zeros.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 21 of 59

eCv specifications
General Notes
All expressions within eCv specification constructs must have NO have side effects. So the following are
not permitted in specifications:

l assignment expressions

l operators ++ and -- (both prefix and postfix)

l assigning operators (e.g. +=)

l calls to functions that have side-effects, i.e. functions with explicit or implicit non-empty writes-clauses

l reading or writing volatile variables

Where a specification macro takes an expression list, the expressions must be separated by a semicolon, not by a
comma. This is because macros in C90 and C++ must have a fixed number of arguments.

Example:

pre(n >= 0; n <= 10) /* correct */
pre(n >= 0) pre (n <= 10) /* correct */
pre(n >= 0, n <= 10) /* incorrect */

Within specifications, you may use ghost functions and ghost members. For example, if myArray is a parameter of
array type, then myArray.lwb gives the lowest valid index (usually 0), and myArray.upb gives the highest valid index
(usually one less than the number of elements in the array).

Similarly, if s is a parameter of type char * array, then isNullTerminated(s) expresses the condition that there is a
valid non-negative index into s such that the corresponding element of s is the null character. See the list of ghost
members and predefined ghost functions later in this document.

Type constraints
You can declare a constrained type by using an invariant clause within a typedef declaration. Here is an example:

typedef int invariant(value in 0..100) percent;

The argument of invariant is an expression that constrains on the values of this type, using the keyword value to
refer to any such value. The constraint may refer to constants but not to variables.

The semantics of constrained types are as follows, in which the term underlying type refers to the type that precedes
the invariant clause:

l A value of a constrained type can be converted implicitly to the underlying type. In particular, this conversion
occurs whenever a value of a constrained type is subject to the "usual arithmetic conversions".

l A value of the underlying type can be converted implicitly to the constrained type. However, eCv generates a
verification condition to ensure that the value is permitted by the constraint.

l If a static variable or a field or element of a static variable has a constrained type, it must either have an
initializer or the constraint must allow the default static-initialized value of the underlying type.

l A pointer to a constrained type may not be cast to or from any other type, other than another type that is a
synonym for it. In the above example, a percent* may not be cast to or from a int*. However, if we also
declare:

Page 22 of 59

typedef percent percent2;

then percent2 is a synonym of percent and we may convert between percent* and percent2* in either
direction, explicitly or implicitly. If instead we declare:

typedef int invariant(value in 0..100) percent2;

then percent2 and percent are treated as different types, and there is no conversion from percent* to
percent2* or vice versa.

Note that you can avoid a lot of potential aliasing problems by using constrained types, since a pointer to a
constrained type cannot be aliased to a pointer to any other type that is not a synonym for that type.

Function contracts
Function contracts are placed after the function parameter list, but before the opening brace "{" of the function body
(if any).

You may declare any or all of writes-clauses, preconditions, recursion variants, returns-expressions and
postconditions, but they must be declared in that order. The syntax of these is:

l writes(writes-expression-list)

l pre(expression-list)

l decrease(expression-list)

l returns(expression)

l post(expression-list)

You may declare more than one writes-clause, precondition, postcondition or variant, which is equivalent to declaring
a single, longer list. For example:

pre(n >= 0)
pre(n <= 10)

means the same as

pre(n >= 0; n <= 10)

Keep the arguments of each specification on a single line as far as possible, to avoid getting misleading line
numbers in error and warning messages.

writes(writes-expression-list)

The writes-clause specifies what nonlocal variables the function writes. A writes-clause may contain the following
elements, separated by semicolon:

l Normal lvalue expressions of non-volatile types, indicating that those expressions may be written to.

l Expressions of the form some(type-name), indicating that any nonlocal values of the designated type may
be written. This form should only be used when the expressions that are written cannot be individually
enumerated. For example, a function that iterates through a list updating every node in the list would specify
writes(some(node_t)) where node_t is the type of the list node. [Note: the semantics of some are not
fully implemented in the initial release of eCv, therefore programs using some may not be completely
verifiable.]

l The special form volatile, indicating that the function writes and/or reads unspecified volatile variables. It is
not necessary to list the variables individually.

If you don't provide a writes-clause, then a default one is constructed. The default will be such that for any parameter

Page 23 of 59

declaration of the form T *p or T * array p where T is not qualified by const or volatile, the function is assumed to
write to *p. If your function writes to any other nonlocal variables (for example, static variables), then you must
declare all the nonlocal variables it writes to in a writes-clause.

If you have a function with a parameter of the form T *p that doesn't write to *p, then if the function is under your
control, we recommend you add the const qualifier. If this is not possible (for example, it is a third-party library
function that you cannot change), use an explicit writes-clause to prevent eCv from assuming that the function writes
to *p. You can use the form writes() to indicate that a function writes no nonlocal variables at all.

pre(expression-list)

Preconditions describe the constraints that the caller must satisfy when calling the function. eCv requires that all
function preconditions be declared explicitly.

decrease(expression-list)

Recursion variants are only used in recursive function specifications, and allow eCv to prove that the recursion
terminates. See Perfect Developer Language Reference Manual for details. Note that a function may have a recursive
specification even if its implementation is not recursive.

returns(expression)

Returns-specifications describe the value that a function returns (not allowed if the function return type is void). The
specification returns(e) is equivalent to post(result == e) with the important exception that the expression
inside returns(...) is permitted to make recursive calls to the function being specified, whereas expressions
inside post(...) are not.

post(expression-list)

Postconditions describe conditions that the function guarantees hold when it returns. In postconditions, you may use
the keyword result to refer to the value returned by the function. A non-void function may have both a returns-
specification and a postcondition - for example, the postcondition might assert additional properties of the function
result and/or describe side-effects of the function.

Where to put function contracts

If a function has extern linkage (i.e. it is not declared static), then you will normally define the function in a .c file
and provide a prototype for it in a .h file. You should do the following:

l Declare the writes-clause (if applicable) and any preconditions and postconditions for the function in the
prototype. This means that when you verify another .c file that #includes the file containing the prototype, the
specifications are available.

l #include the .h file in the .c file (this is normal practice anyway, so that the prototype gets checked against
the definition). If you don't do this, then the preconditions and postconditions will not be available when the
function itself is verified.

l If the specification is recursive (i.e. the returns-specification calls the function recursively), you must declare a
variant in the prototype. If only the function body is recursive, you may declare a variant in either the prototype
or the definition, but not in both.

eCv will give an error message if, when processing a .c file and all the other files that it #includes, it finds a function
definition with specifications and there is a prototype for that function in a different file.

If you need to provide specifications for functions declared in a third-party header file, but you do not wish to add
specifications or the array or null keywords to that header file, you can declare prototypes for the same functions
with added specifications, array and null keywords in your own header file. Each such function declaration should
be prefixed with the spec keyword to tell eCv that this overrides the other one. eCv will nevertheless check that each
pair of declarations is compatible, ignoring the missing array and null keywords in the third-party file.

Page 24 of 59

eCv provides a number of header files corresponding to the standard C header files for this purpose. For example, file
ecv_string.h provides specifications for functions in the standard header file string.h. So if your program includes
string.h, you must also include ecv_string.h. Note that including ecv_string.h alone is not sufficient to make the
declarations in string.h available. This is to ensure that your compiler sees its own versions of the declarations. You
do not need to make the inclusion of ecv_string.h and similar files conditional on #ifdef __ECV__ because this is
already done inside the file.

If a function is local to a single file (i.e. static linkage), then you must declare the specifications in the prototype, if it
has one. If the function has no prototype, then declare the specifications in the function definition.

Loop specifications

Loop writes clause

eCv needs to know what variables a loop modifies. If a loop modifies only the local variables of the function it occurs
in, and modifies them directly rather than via a pointer, then eCv can generally work this out for itself. However, if a
loop modifies anything else, or anything via a pointer or array pointer, then a writes-clause for the loop must be given
explicitly. For example, consider the following:

void setArray(int * array a, size_t size, int k)
{ size_t i;
 for (i = 0; i != size; ++i) {
 a[i] = k;
 }
}

The loop modifies elements of the array a which is not a local variable, therefore a writes-clause is needed. The loop
modifies all elements of the array, therefore the appropriate expression is a.all:

void setArray(int * array a, size_t size, int k)
{ size_t i;
 for (i = 0; i != size; ++i)
 writes(a.all)
 {
 a[i] = k;
 }
}

Note: if a loop modifies any elements of a local array, and no writes-clause is given, then it will be assumed that the
loop modifies all elements of the array. You can use a loop invariant to describe elements of the array that do not
change.

Loop invariant

eCv requires you to write a loop invariant for every loop. If you want eCv to prove that the loop terminates, then you’ll
also need to provide a loop variant, unless eCv can work one out for itself.

A loop invariant is a Boolean expression that depends on all the variables modified by the loop, and is true when the
loop is first entered, at the start and end of each iteration of the loop, and when the loop terminates. Typically, it
comprises two parts.

The most important part of the loop invariant is a generalization of the state that the loop is intended to achieve. It
needs to be written so that it is easy to establish this part of the invariant before the loop starts, by suitable
initialization of variables; yet it becomes exactly the desired state when the loop terminates. I’ll refer to the desired
state when the loop terminates as the loop postcondition.

For example, suppose we have an array a of integers, and we want to set every element in that array to k . Here’s a
function to do that:

void setArray(int * array a, size_t size, int k)
pre(a.lwb == 0)
pre(a.lim == size)
post(forall j in 0..(size - 1):- a[j] == k)

Page 25 of 59

{ size_t i;
 for (i = 0; i != size; ++i)
 writes(a.all)
 {
 a[i] = k;
 }
}

The first precondition says that a is a regular pointer to the start of an array. The second one says that the number of
elements is given by size.

The postcondition says that when the function returns, for all indices j in the range 0 to (size – 1), a[j] is equal to k .

In this case, the loop comprises the entire body of the function, so the loop postcondition is the same as the
function postcondition. In fact, loop postconditions are very frequently forall expressions, especially for loops that
iterate over an array.

We need to generalize the forall expression in the postcondition here so that it is true at the start of every iteration
of the loop. The state when we are about to commence the ith iteration will be that we’ve already set all elements
from zero to i-1 (inclusive) to k , but not the elements from i onwards. We can express this with a slight modification
to the forall expression, like this:

forall j in 0..(i - 1) :- a[j] == k)

The upper bound of the forall has been changed from (size – 1) in the postcondition to (i – 1) here. This gives us
exactly what we need for the loop invariant:

l The loop initialization sets i to zero, so the initial bounds of the forall are 0 .. -1 (that is, from zero up to
minus one). This is an empty range (because -1 is less than 0), and a forall over an empty range is true. So
the loop invariant is established at the start of the first iteration.

l During each iteration, we set the ith element to k and we increment i. So the invariant is preserved. For
example, after the first iteration, the forall has range 0..0 so it just tells us that a[0] == k , which is exactly
right. After the second iteration, the range is 0..1 so it says that a[0] and a[1] have value k , which again is
exactly right.

l The loop terminates when i == size, because I wrote the while-condition as i != size. If we replace i by size in
the invariant, we get exactly the desired postcondition.

eCv expects the loop invariant to be written between the loop header and the body, like this:

void setArray(int * array a, size_t size, int k)
pre(a.lwb == 0)
pre(a.lim == size)
post(forall j in 0..(i - 1) :- a[j] == k)
{ size_t i;
 for (i = 0; i != size; ++i)
 writes(a.all)
 keep(forall j in 0..(i - 1) :- a[j] == k)
 { a[i] = k;
 }
}

eCv uses the keyword keep to introduce the invariant, because we’re keep-ing the invariant true.

Unfortunately, this is not yet enough to allow eCv to verify the loop. Using the above, eCv reports that it is unable to
prove that a[j] is in-bounds in the loop invariant, or that a[i] is in-bounds in the loop body.

So, we need another component of the loop invariant, to ensure that these accesses are always in bounds. To make
sure that a[i] is in bounds, we need to constrain i to be in the range 0..(size - 1) at that point. But we can’t constrain
i to this range in the invariant, since when the loop terminates, i ends up with the value size, which is just outside
this range. Instead, we constrain i to the range 0..size. The body is not executed when i == size, so that constraint
is sufficient to guarantee that a[i] is in bounds in the body. The code then looks like this:

void setArray(int * array a, size_t size, int k)
pre(a.lwb == 0)

Page 26 of 59

pre(a.lim == size)
post(forall j in 0..(i - 1) :- a[j] == k)
{ size_t i;
 for (i = 0; i != size; ++i)
 writes(a.all)
 keep(i in 0..size)
 keep(forall j in 0..(i - 1) :- a[j] == k)
 { a[i] = k;
 }
}

eCv reported that it was unable to prove that a[j] was in bounds in the original keep clause. Putting the new keep
clause before the original one allows eCv to assume that i is in 0..size in the second keep clause. That is enough
for it to prove that a[j] is in bounds, because j takes values from 0 to i – 1.

Using the above, eCv is able to prove that this function meets its specification, if the loop terminates. To prove that it
terminates, we’ll need to provide a loop variant too.

Note: if the while-part of a for-loop or while-loop has side effects, then the loop invariant refers to the state before
those side-effects take place.

Proving loop termination

The easiest way to prove that a loop (that is designed to terminate) actually does terminate is to use a loop variant.
A loop variant in its simplest form is a single expression that depends on variables changed by the loop. It has the
following properties:

l Its type has a defined lower bound, a finite number of values, and a total ordering on those values;

l Its value decreases on every iteration of the loop.

If we can define such a variant, then we know that the loop terminates, because from any starting value the lower
bound must be reached after a finite number of iterations – after which it can’t decrease any more.

To ensure that the first of these properties is met, eCv only allows loop variant expressions to have integer, Boolean,
or enumeration type. For integer variants, eCv assumes a lower bound of zero and will need to prove that such a
variant is never negative. For Boolean expressions, the lower bound is false, and true is taken to be greater than
false. For expressions of an enumeration type, the lower bound is the lowest enumeration constant defined for that
type.

In order to show that our example loop terminates, we need to add a loop variant in the form of a decrease clause.
In this case, it is simple to insert a loop variant based on the loop counter:

void setArray(int * array a, size_t size, int k)
pre(a.lwb == 0)
pre(a.lim == size)
post(forall j in 0..(i - 1) :- a[j] == k)
{ size_t i;
 for (i = 0; i != size; ++i)
 writes(a.all)
 keep(i in 0..size)
 keep(forall j in 0..(i - 1) :- a[j] == k)
 decrease(size - i)
 { a[i] = k;
 }
}

The expression size – i meets the needs of a loop variant in eCv because:

l It has one of the allowed types (i.e. integer);

l It is always >= 0 inside the loop body (actually, it is >= 0 outside the loop body as well, although eCv doesn’t
require that);

l It decreases on every iteration (because i increases while size remains constant).

Page 27 of 59

eCv will try to prove that size – i is never negative, and that size – i decreases from one iteration to the next. The first
of these is easily proven from the invariant i in 0..size. The second is easily proved because the loop increments i at
the end of each iteration but leaves size alone.

For a for-loop whose header increments a loop counter from a starting value to a final value, we can always use a
loop variant of the form final_value – loop_counter, provided the loop body doesn’t change loop_counter or
final_value.

For some loops, each iteration may make progress towards termination in one of several ways. For example, you
could write a single loop that iterates over the elements of a two-dimensional array. Each iteration might move on to
the next element in the current row, or advance to the next row if it has finished with the current one. In cases like
this, defining a single variant expression for the loop can be awkward. So eCv allows you to provide a list of variant
expressions. Each iteration of the loop must decrease at least one of its elements in the list, and may not increase
an element unless an element earlier in the list decreases. So it must either decrease the first element, or keep the
first element the same and decrease the second element, or keep the first two elements the same and decrease the
third; and so on.

Note: if the while-part of a for-loop or while-loop has side effects, then the loop variant is computed after those side-
effects take place.

Ghost declarations
Sometimes it is easier to write a specification if you declare additional constants, variables and function prototypes
(with associated contracts) that are referred to only in specifications. Such a declaration is called a ghost
declaration. To tell eCv that is declaration is ghost, and to avoid your compiler generating code for ghost
declarations, such a declaration is enclosed in the ghost(...) macro. Here are some example ghost declarations:

ghost(
 int max3(int a, int b, int c)
 post(result >= a && result >= b && result >= c && (result == a || result
== b || result == c);
)

ghost(const int maxReading = 1000;)

There are some special rules for ghost declarations, as follows:

l A ghost function declaration may not have a body. It must be a prototype, and to be useful it must have a
contract specification.

l Ghost declarations may use the predefined ghost type integer, which is an integral type with no bounds; and
the predefined ghost collection types _ecv_set<T>, _ecv_bag<T> and _ecv_map<T1, T2> (see the Library
Reference section of the Perfect Developer Language Reference Manual for details of these collection types)

l Ghost functions may have array return types, for example int[]

You may refer to ghost declarations in specification contexts and in other ghost declarations, but not in code. The
final semicolon at the end of the ghost declaration (before the closing parenthesis that completes the ghost macro
invocation) is optional.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 28 of 59

Additional eCv constructs
Additional eCv declarations
The following additional types of declaration are available. They may not appear inside functions, and their scope is
the file in which they are declared.

In the following, a spec-expression-list is a list of one or more spec-expressions separated by semicolons. A spec-
expression is any expression that has no side effects. A spec-expression may refer to ghost declarations.

assert(<spec-expression-list>)
assert((<parameter-list>) : <spec-expression-list>)

The first form causes eCv to generate verification conditions that all the expressions in the spec-expression-list are
true. Whether proven or not, each expression in the list will be assumed true when attempting to prove that the
following expressions are true, and when proving subsequent verification conditions in the same scope.

In the second form, the parameter list must not be empty and all the parameters must be named. The prover
generates verification conditions that all the expressions in the spec-expression-list are true for all possible values of
the parameters.

You can also use assert as a statement (see below).

Note: if you wish to #include "assert.h" in your source file so that you can do run-time checking of assertions in a
debug build, then we suggest you introduce any global assertions with the keyword _ecv_assert instead of assert,
otherwise your compiler will report a syntax error.

assume(<spec-expression-list>)
assume((<parameter-list>) : <spec-expression-list>)

The first form causes the prover to assume that each expression in the spec-expression is true, without generating a
verification condition. Useful when you want to provide information that eCv has no way of finding out for itself. Here is
an example:

struct Foo {
 int x;
 double y;
}

assume(sizeof(struct Foo) <= 2 * min_sizeof(struct Foo))

Although eCv can calculate a minimum value for the size of a structure, it cannot calculate a maximum value
because the amount of padding inserted by the compiler is unknown. This means that eCv is normally unable to
prove that calculations involving the size of a structure do not overflow. In this example, we use an assume
declaration to put an upper limit on sizeof(struct Foo), thereby avoiding this problem.

The second form causes the prover to assume that each expression in the spec-expression is true, for all possible
values of the parameters.

You can also use assume as a statement (see below).

Additional eCv statements
assert(<spec-expression-list>);

Page 29 of 59

Causes eCv to generate a verification condition that each spec-expression is true at that point, and then to assume it
is true when proving subsequent verification conditions.

Note: if you wish to #include "assert.h" in your source file so that you can do run-time checking of assertions in a
debug build, then we suggest the following:

l Make the inclusion of assert.h conditional (see chapter 2);

l Use only one spec-expression in the spec-expression-list;

l Avoid using ghost functions and fields in this spec-expression.

This will avoid assertions that are legal in eCv but not in the standard definition of the assert macro. You can still
write eCv-only assertions by using _ecv_assert(<spec-expression-list>) to introduce an assertion that is visible to
eCv but not to your compiler, even when you have included assert.h.

assume(<spec-expression-list>);

The main use of assume is as described above; however assume can also be used within a statement list, in a
similar way to assert. When assume is used in this way, each expression in spec-expression-list is assumed true
without generating a verification condition.

This is useful when you want to provide information that eCv has no way of finding out for itself.

pass;

A "do nothing" statement,which can be useful when, for instance, you want to provide an empty loop body.

Additional eCv expressions
In specifications and within the declarations of ghost functions, you can use some special eCv expression
types as well as side-effect-free expressions from the C language. The not-null expression (which can
be used in normal code as well) may be useful, too.

Binary operators

<cast-expression_1> . . <cast-expression_2>

Builds a sequence (i.e. an array) of values comprising cast-expression_1, cast-expression_1+1, cast-
expression_1+2 and so on up to cast-expression_2. If cast-expression_1 > cast-expression_2, the sequence is
empty. The expressions must both be of integral type (in which case they are promoted to integer, which is the
type of unbounded integers), or of type char, or of type wchar_t, or of the same enumeration type.

We suggest using a space before and after the ".." operator to avoid the possibility that the C preprocessor treats
the whole construct as a preprocessing number. In particular, if cast-expression_1 is an integer literal, cast-
expression_2 starts with a macro name (for example, result), and there are no spaces, then the preprocessor will
not recognize the macro.

<logical-or-expression_1> => <logical-or-expression_2>

The => operator means implication, so that a => b means "a implies b". This is equivalent to (!a || b) but is easier to
read in some specification contexts, such as preconditions.

The precedence of => is lower than ||, so any && or || operators in the operands are evaluated before the implication
is evaluated.

<relational-expression> in <shift-expression>

Returns true if and only if the left operand occurs in the right operand. The right operand must be an array, set or

Page 30 of 59

bag whose element type is the same as the type of the left operand. Or the right operand can be a map whose
domain type is the same as the type of the left operand.

<multiplicative-expression> idiv <cast-expression>
<multiplicative-expression> imod <cast-expression>

idiv is a version of the integer division operator / that always rounds down (i.e. towards minus infinity). imod is a
version of the integer modulus operator % that always returns a non-negative result. Both of these have the
precondition that the second operand is greater than zero.

Compound literals

(<type>){<initializer-list>}

This is the compound literal expression from C99. When eCv is run in C90 or C++ mode, it can be used in
specifications and other ghost contexts. It constructs a value of type from the values in initializer-list. For example,
the expression (int[3]){45, 32, 12} yields an array of three integer values. Don't be misled by the word
"literal", the expressions in initializer-list do not need to be constant-expressions. You may not declare new structs,
unions or enums inside type.

Disjoint expressions

disjoint(<expression_1>, <expression_2>, ...)

Yields true if the storage associated with each expression in the argument list does not overlap with the storage
associated with any other expression in the list. Each expression may be an lvalue or an expression of the form
"some(type-name)" (see also writes-clauses in function specifications). To be meaningful, at least one of the
expression must be of the form *p where p is a pointer, or a[i] or a.all where a is an array pointer. Used mostly in
function preconditions and structure invariants, to state that some parameters or fields of pointer type don't alias the
same memory, or don't point into certain static variables, or never point into structures of certain types.

Holds expression

<relational-expression> holds <member-name>

This yields true if expression was last assigned a value through member-name. The type of expression must be a
union, and member-name must be one of the members of that union.

'Old' operator

old <postfix-expression>

Within a postcondition, any mention of a variable or other object normally refers to the value of that variable or object
when the function returns. [Exception: any mention of a function parameter in a postcondition always refers to the
initial value of that parameter, because changes to the values of parameters are not visible to the caller of the
function.] However, it is often useful to refer to initial values in a postcondition as well, so that the postcondition can
describe how the final value relate to the initial value. You can do this by applying the old operator to the expression
whose initial value you are interested in.

Here is an example:

static unsigned int count;

void updateCount(unsigned int *p)
writes(count; *p)
pre(p != &count)
pre(count + *p <= maxof(unsigned int))
post(count == old count + old(*p))
post(*p == 0)
{

Page 31 of 59

 count += *p;
 *p = 0;
}

You can also use the old operator in a loop invariant or loop variant, to refer to the value of an expression just before
the loop was entered for the first time.

Named subexpressions

(let <identifier-1> = <expression-1>; let <identifier-2> = <expression-2>; ... ; <expression>)

This allows you to construct an expression by first naming a subexpression and then using that name as many
times as you wish, thereby avoiding the need to write out the subexpression in full each time. For example, to
compute the fourth power of x in a ghost context we could use:

(let square = x * x; square * square)

The scope of each name is the remainder of the parenthesised expression in which it is declared.

Type operators

default(<type-name>)

Yields the value of the type when it has default initialization, for example the initial value of a static variable that was
declared without an initializer. For integral types this is also the value corresponding to a bit pattern of all zeros. This
is not necessarily true for pointer types and floating-point types.

maxof(<type-name>)

Yields the maximum value of the specified type, which must be an enumeration or unconstrained integral type, or an
alias for such a type.

minof(<type-name>)

Yields the minimum value of the specified type, which must be an enumeration or unconstrained integral type, or an
alias for such a type.

min_sizeof(<type-name>)

Yields the lower limit of sizeof(type-name). If sizeof(type-name) is known exactly by eCv, then min_sizeof(type-
name) is equal to sizeof(type-name). For a structure, min_sizeof(struct S) is the sum of the sizes of all the fields of
S, that is, the size that a struct S would be have if there is no padding.

zero_init(<type-name>)

Yields the value of type-name corresponding to zero initialization. Same as default(type-name) for integral and
character types; undefined (i.e. platform-dependent) for other types.

Quantified expressions

In the following, a collection-expression is an expression with type T[], set<T> or bag<T> for some type T. A bool-
expression is an expression that has type bool.

forall <type> <identifier> :- <bool-expression>

Yields true if, for every value of identifier in type, bool-expression is true.

forall <identifier> in <collection-expression> :- <bool-expression>

Page 32 of 59

Yields true if, for every value of identifier in the array or collection expression, bool-expression is true.

exists <type> <identifier> :- <bool-expression>

Yields true if, for some value of identifier in type, bool-expression is true.

exists <identifier> in <collection-expression> :- <bool-expression>

Yields true if, for some value of identifier in the array or collection expression, bool-expression is true.

Operations on collections

that <identifier> in <collection-expression> :- <bool-expression>

Yields the single element in collection-expression for which bool-expression is true. There must be exactly one such
element.

those <identifier> in <collectionexpression> :- <bool-expression>

Selects those elements in collection-expression for which bool-expression is true, yielding a new collection
containing those elements. If the collection is an array, then the elements in the result appear in the same order as
they did in the original.

For example, the following expression:

those x in arr :- x >= 0

yields an array comprising the non-negative elements of arr.

for <identifier> in <collection-expression> yield <expression>

Yields a new collection obtained by mapping the elements of collection-expression using expression. The original
collection is unchanged. If the collection is an array, then the elements in the result appear in the same order as the
elements they were derived from appeared in the original.

For example, if arr has type int[] then the expression:

for x in arr yield x + 1

yields an array of type integer[] with the same number of elements as the original, in which each element is one
greater than the corresponding element in arr.

for those <identifier> in <collection-expression> :- <bool-expression> yield <expression>

Yields a new collection obtained by selecting those elements of collection-expression for which bool-expression is
true and mapping them using expression. The original collection is unchanged. If the collection is an array, then the
elements in the result appear in the same order as the elements they were derived from appeared in the original.

For example, if arr has type int[] then the expression:

for those x in arr :- x >= 0 yield x + 1

first selects the non-negative elements of arr and then adds 1 to them, yielding an array of type integer[].

<binary-operator> over <collection-expression>

Applies the specified binary operator sequentially over the elements of the collection, starting from the element at

Page 33 of 59

index 0. For example, the expression + over arr where arr has type int[] yields the sum of the elements. If
the sequence has only one element, then the result is the value of that element. If the operator is known to eCv and
has a left-identity value declared, then it is permissible for the sequence to be empty, in which case the value is the
left identity. Otherwise, this construct has the precondition that the sequence is not empty. Operators + and * over
integral types and floating types all have a left identity element known to eCv.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 34 of 59

Predefined ghost types, functions and
fields
A ghost type, function or field is one that you can refer to in specifications, but not in code. As well as the
predefined ones that eCv provides, you can declare your own ghost types and functions, and you can
declare ghost fields of your own struct and union types.

The predefined ghost fields of pointers and array pointers are read-only. Even though ghost fields are not stored at
run-time, eCv can track their values and reason about them.

Global ghost variables

Global ghost functions
Where these functions have names not beginning with _ecv_, they are declared as macros in the header files
indicated, in terms of intrinsic functions whose names begin with _ecv_. You can therefore rename any whose
names clash with your own identifiers.

Ghost fields of array pointer types
Each array pointer type T* array (where T is any type) has the following ghost fields:

Variable name and type Description Where
declared

_ecv_seq<_ecv_VolatileBase>
_ecv_vol_ops

Records the sequence of reads from and writes to volatile
variables performed by the program Built in

Function name and signature Description Where
declared

bool isNullTerminated(const char * array str)

Yields true if there is a null in str with an index
between zero and the upper bound of str.
Typically used in function preconditions to state
that a parameter of type char* array or const
char* array must be a null-terminated string.

ecv_string.h

bool _ecv_allBytesAre(const void* array p, int
val, size_t num)

Yields true if the first n characters of memory
addressed by p have the value val. Used to
describe the semantics of memset and similar
functions.

Built in

bool _ecv_equalBytes(const void* array p, const
void* array q, size_t num)

Yields true if the first n characters of memory
addressed by p and q are correspondingly
equal. Used to describe the semantics of
memcpy and similar functions.

Built in

template<typename T> T _ecv_readVolatile(T* p)
writes(_ecv_vol_ops)

Read from the volatile variable at *p, record the
read in _ecv_vol_ops and return the value read. Built in

template<typename T> T _ecv_writeVolatile
(T* p, T val) writes(_ecv_vol_ops)

Write val to the volatile variable at *p, record the
write in _ecv_vol_ops and return val. Built in

Field name Type Description

Page 35 of 59

Ghost fields of the void pointer type
The void pointer type void* has the following ghost fields:

Ghost fields of array types
Each array type T [] (where T is any type) has the following ghost fields:

all T[]

All the elements of the array that is pointed to, including elements with a negative
index (if any). If ap is an array pointer, then ap.all is a bit like *ap except that it
returns the value of the whole array, instead of just the value of the array element that
ap points to. Important: if you write a function postcondition involving a.all where a is
a function parameter with array pointer type, then the postcondition is required to
apply to the whole array including any negative indices. If the code of your function
does not take account of possible negative indices, then the postcondition is likely to
be unprovable. You can get round this by specifying that a is a pointer to the start of
an array (so that there are never any negative indices), for example by including
a.lwb == 0 in the function precondition.

base T* array
A pointer to the same array re-based to point to its first element (so that offset is
zero). You can test whether two pointers a and b point into the same array using the
expression a.base == b.base.

count integer The count of all elements in the array, equal to offset + lim.

indices seq<integer> The sequence lwb..upb, i.e. a sequence comprising all the valid indices of the array
pointer.

lim integer
One greater than the highest valid index. For any array pointer that was not created
by pointer arithmetic, this is the number of elements in the array. Never less than
zero.

lwb integer The lowest valid index, equal to (-offset).

offset integer
The offset of the pointer into the array relative to the start of the array, as a number of
elements. Zero for any array pointer that was not created by pointer arithmetic.
Always between zero and count inclusive.

upb integer The highest valid index, equal to lim - 1. Never less than -1.

Field name Type Description

all Universal
object type The whole object that the pointer points to or into.

lim integer
The size of the object in characters, not including any part of it that has a negative
offset from the pointer. If pv has type void* then ((char*)pv).lim == pv.lim. Never less
than zero.

offset integer
The offset of the pointer into the object relative to the start of the object, as a number
of characters. Zero for any void* pointer that was obtained by converting a non-array
pointer or a pointer to the sgart of an array.

Field
name Type Description

count integer The count of elements, i.e. the same value as lim.

indices seq<integer> The sequence 0..upb, i.e. a sequence comprising all the valid indices of the array
pointer.

lim integer One greater than the highest valid index, i.e. the number of elements in the array.

lwb integer The lowest valid index. Always zero.

upb integer The highest valid index, equal to lim - 1.

Page 36 of 59

Note: there is no ghost member all for array types, because this would just return a copy of the array itself.

Ghost member functions of array and sequence types
Each array type T [] or sequence type seq<T> (where T is any type) has the following ghost member functions:

Other ghost members of array and sequence types are available, as detailed in the Library Reference section of the
Perfect Developer Language Reference Manual (look up class seq of X).

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Function name Preconditions Description of return value

seq<T> drop(integer
n) 0 <= n; n <= lim A sequence comprising the array elements with the first

n removed

bool isndec() Element type T is a
comparable type true if and only if the elements are in nondecreasing order

bool isninc() Element type T is a
comparable type true if and only if the elements are in nonincreasing order

T max() Element type T is a
comparable type; lim != 0 The maximum element

T min() Element type T is a
comparable type; lim != 0 The minimum element

seq<T> permndec() Element type T is a
comparable type

A sequence comprising the elements of the array sorted into
nondecreasing order

seq<T> permninc() Element type T is a
comparable type

A sequence comprising the elements of the array sorted into
nonincreasing order

seq<T> rev() A sequence comprising the elements of the array in reverse
order

seq<T> slice(integer
start, integer len)

0 <= start; 0 <= len; start +
len <= lim

A sequence comprising len elements from the array starting
at index start. Equivalent to drop(start).take(len)

seq<T> take(integer
n) 0 <= n; n <= count A sequence comprising the first n elements of the array

Page 37 of 59

Appendix A - Compiler Settings
The following are sample compiler configuration (in the Options → C/C++ Compilers settings). They are
used only to run the preprocessor.

Note: eCv may be supplied with some predefined compiler configurations, so you may not need to set these up
yourself.

Microsoft Visual C++ or Visual C++ Express
l executable is "C:/Program Files/Microsoft Visual Studio ###/vc/bin/cl.exe" where ### depends on the version

you installed (8 for 2005, 9.0 for 2008 and 10.0 for 2010)

l additional path for executable files is "C:/Program Files/Microsoft Visual Studio ###/Common7/IDE"

l language is C90 or C++ as desired (C99 is not supported)

l char is signed unless the /J compiler option is used, in which case it is unsigned

l wchar_t is unsigned

l sizes for char, short, int, long, long long are 8, 16, 32, 32, 64 respectively

l sizes for float, double, long double are 32, 64, 64 respectively

l pointer size is 32 bits when using the 32-bit compilers, or 64 bits when using the 64-bit compilers

l integer division rounds towards zero

l include path intro is "/I" (that's capital i as in Include)

l include path separator is " /I" (that's capital i as in Include; note the extra space at the start)

l #define intro is "/D"

l #define separator is " /D" (note the extra space)

l preprocessor command for C90 is: "/P /nologo /Za /TC $d $i $x $f".

l preprocessor command for C++ is: "/P /nologo /Za /TP $d $i $x $f".

Under 64-bit Windows, replace "Program Files" in all the above by "Program Files (x86)".

gcc
l executable is "cpp" (this runs the preprocessor directly) - if you are running under Windows via MinGW or

Cygwin, then use "cpp.exe" and provide the full path

l additional path for executable files - under Windows this should be the folder containing file cc1.exe

l language is C90, C99 or C++ as desired

l for modern versions of gcc, the sizes for various types and the signedness of plain char and wchar_t are as
defined by the Application Binary Interface for the platform you are targeting (the signedness of plain char can
be overridden by compiler options -funsigned-char and -fsigned-char, and wchar_t can be forced to be
equivalent to unsigned short int with -fshort-wchar)

l integer division rounds towards zero

l include path intro is "-I " (that's capital i as in Include)

l include path separator is " -I " (that's capital i as in Include; note the extra space at the start)

l #define intro is "-D "

Page 38 of 59

l #define separator is " -D " (note the extra space at the start)

l preprocessor command for C90 is: "-x c -std=c90 -o $o $d $i $x $f".

l preprocessor command for C99 is: "-x c -std=c99 -o $o $d $i $x $f".

l preprocessor command for C++ is: "-x c -std=c++98 -o $o $d $i $x $f".

Important: some of the header files for gcc use non-standard syntax of the form __attribute__((...)). In order to hide
this syntax from eCv, file eCv.h #defines __attribute__(_x) as a null macro when both __ECV__ and __GNUC__ are
defined. However, certain gcc-related header files (e.g. _mingw.h) contain the line "#undef __attribute__". You will
need to remove any such lines, or surround them with #ifndef __ECV__ ... #endif.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 39 of 59

Appendix B - Type system of eCv
The type system of eCv is based on C, with these changes:

l The type 'pointer to array of T' is distinct from 'pointer to T'. The syntax 'T*' means 'pointer to T'. To specify
'pointer to array of T', use 'T* array'. You may not apply indexing or pointer arithmetic to non-array pointers.

l Pointers (including pointers to arrays) are not nullable by default (i.e. zero is not an allowed value). You can
specify that null is an allowed value using the type qualifier 'null', e.g. 'T* null' or 'T* array null'. The order of
qualifiers 'array' and 'null' (and any other type qualifiers you use) is not significant. There is an implicit type
conversion from each plain pointer type to the corresponding nullable pointer type, but not the other way
round. To convert the other way, use 'not_null(e)' which asserts that e is not null and converts its type from 'T*
null' to 'T*', or from 'T* array null' to 'T* array'.

l Union types have an additional ghost field called the discriminant, which remembers the name of field the
union was last assigned through. This field cannot be referred to at run-time (because it isn't stored), however
it can be referred to in specifications via the holds operator. You may only access a union member if it was
most recently assigned via the same member.

l bool is a separate type

l char is a separate type, not an alias for signed char or unsigned char

l wchar_t is a separate type, not an alias for some other integral type

l Each enumeration declaration creates a distinct type, not an alias for an integral type

Semantic differences between eCv and C90
l The type of a string literal in eCv is const char* array (like C++ with the addition of array) instead of char*.

Therefore, you cannot provide a string literal in a context where a value of type char* is required. This
difference is backwards-compatible in the sense that any legal use of a string literal in eCv is also a legal use
in C and has the same semantics.

l The type of a wide string literal is const wchar_t * array instead of wchar_t *.

l The type of a character literal in eCv is char (like C++) instead of int. If you want to use a character literal in
a situation where a value of type int is required, you must cast it explicitly to type int. This change is
backwards-compatible in that any legal use of a character literal in eCv is also a legal use in C, although
some compilers might generate a warning that an explicit cast of a character literal to type int is redundant.
You can define a char-literal-to-int conversion macro to avoid any such warnings. Note that in eCv it is illegal
to use a character literal as the operand of sizeof, because this would yield a different result from C.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 40 of 59

Appendix C - Constructs you may see in
proof output
The math used by the prover is different from C maths, so you may see some expressions that are neither
part of standard C nor part of the eCv specification extensions. Here is a list of [some of] them. You should
not see these in error messages, or anywhere else other than in proof/unproven output files - let us know
if you do.

Binary operators ./ and .%

These are round-towards-zero versions of the / and % integer operators. Plain / and % in proofs refer to the version of
integer division that always rounds down and the version of modulo that yields a result having the same sign as the
divisor.

Unary operator #

This means the number of elements in the collection operand. For an array arr, #arr equates to arr.count.

Subscripted variables

A variable of the form foo543,21 means the value of variable foo at line 543 column 21 in the .i file that was generated
by the preprocessor. Similarly, heap543,21 means the value of the heap at that location.

"$r.value" expressions

The expression p.$r.value where p is a simple pointer is the prover's internal representation of *p. The expression
ap.$r.value where ap is an array pointer is the prover's internal representation of ap.all, i.e. all the elements in the
array to which ap points.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 41 of 59

Appendix D - Verification condition types
Verification condition types generated by eCv, and their meanings. [TBD]

See separate document Verification Conditions Generated by Escher Verification Studio.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 42 of 59

Appendix E - Language extensions for C99
and C++
If you are using a C99 compiler, then the rules for C90 still apply, however you may use the following
additional features of C99:

l comments introduced by // (these are allowed by eCv even in C90 mode)

l declarations do not have to be at the start of a compound statement; however, eCv does not allow
declarations directly in the cases of a switch-statement

l inline storage class when declaring functions

l _Bool type (provided that you set up the correct definitions so that it is equivalent to eCv's bool type)

l compound literals (but not using named member notation)

If you are using a C++ compiler then the rules for C90 still apply, however you may use the following
features from C++:

l comments introduced by //

l declarations do not have to be at the start of a compound statement (however, eCv does not allow
declarations directly in the cases of a switch-statement)

l inline storage class when declaring functions

l bool type

l wchar_t is a type, not a typedef

l const_cast<>, static_cast<> and reinterpret_cast<> operators (but there are limitations on the use of
these)

The following C++ features are planned to be supported in a future release of eCv:

l class, struct, union and enum names are recognized as type names (i.e. no need to introduce them with
'struct' or 'union' or 'enum' every time you refer to one of them)

l classes (but not inheritance, virtual functions, destructors, or pointers-to-member)

l constructors (but not copy constructors). Single-argument constructors must be marked explicit.

l public and private members

l non-virtual function members of classes and structs

l template declarations that do not involve member lookup on dependent types, specialization, or the export
keyword

l reference types, for parameter passing only

Page 43 of 59

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 44 of 59

Appendix F - Grammar
F1. Introduction
Here is a grammar of the C language as subsetted and extended by eCv. It is based on the grammar in the
ISO C90 standard, with the following changes:

l The dangling-else ambiguity has been resolved

l The grammar for switch statements has been rewritten to limit switch statements to the form supported by
eCv

l Grammatical constructs not supported by eCv have been removed (e.g. K&R-style function parameter
declarations)

l Some C99 consructs have been included

l The C++ cast operators (other than dynamic_cast) have been included

l Additional eCv specification constructs and eCv expression types have been added

In the following grammar, keywords are displayed in bold. Other terminal symbols have UPPERCASE names and
the following meanings:

ASSOP One of += -= *= /= %= <<= >>= &= |= ^=

BOOLLITERAL false or true

CASTOPERATOR One of const_cast reinterpret_cast static_cast

CHARLITERAL A character literal token

EMPTYSTRINGLITERAL The empty string literal, i.e. ""

IDENTIFIER An identifier

INTEGERLITERAL An integer literal token

NONEMPTYSTRINGLITERAL Any string literal except the empty string literal

REALLITERAL A float or double literal token

OP4 + or -

OP5 % or /

OPINCDEC ++ or --

OPLEGE >= or <=

OPSHIFT >> or <<

PREDEFTYPE One of bool float void

SIGNMODIFIER signed or unsigned

SIZEOF sizeof or min_sizeof

STORAGECLASS One of auto extern register static

STRUCTORUNION struct or union

THATorANY that or any

TYPEDEF_NAME An IDENTIFIER that has previously been used to name a type in a typedef

Page 45 of 59

The symbol 'Empty' means the empty string. The goal symbol is translation_unit. Comments are italicised.

F2. Grammar
primary_expression:
 IDENTIFIER;
 c_stringLiteral;
 INTEGERLITERAL;
 REALLITERAL;
 CHARLITERAL;
 BOOLLITERAL;
 '(' CExpression ')';
 '(' let_decl_list CExpression ')';
 result.

let_decl_list:
 let_declaration;
 let_decl_list let_declaration.

let_declaration:
 let IDENTIFIER '=' CExpression ';'.

postfix_expression:
 primary_expression;
 BoundOperatorExpr] postfix_expression c_index;
 postfix_expression '(' ')';
 postfix_expression '(' argument_expression_list ')';
 postfix_expression '.' IDENTIFIER;
 postfix_expression '->' IDENTIFIER;
 postfix_expression OPINCDEC;
 '(' type_name ')' '{' initializer_list '}';
 '(' type_name ')' '{' initializer_list ',' '}';
 CASTOPERATOR '<' type_name '>' '(' CExpression ')';
 not_null '(' assignment_expression ')';
 disjoint '(' argument_expression_list ')'.

c_index:
 '[' CExpression ']'.

argument_expression_list:
 assignment_expression;
 argument_expression_list ',' assignment_expression.

unary_expression:
 postfix_expression;
 old postfix_expression;
 OPINCDEC unary_expression;
 unary_operator cast_expression;
 '&' cast_expression;
 '!' cast_expression;
 SIZEOF unary_expression;
 SIZEOF '(' type_name ')';
 TYPEOP '(' type_name ')';
 default '(' type_name ')';
 C_OverOp over postfix_expression.

unary_operator:

declaration

TYPEOP minof or maxof

Page 46 of 59

 OP4;
 '~';
 '*'.

C_OverOp:
 C_MultOper;
 C_AddOper.

cast_expression:
 unary_expression;
 '(' type_name ')' cast_expression.

range_expression:
 cast_expression;
 range_expression C_RangeOper cast_expression.

C_RangeOper:
 '..'.

multiplicative_expression:
 range_expression;
 multiplicative_expression C_MultOper range_expression.

C_MultOper:
 OP5;
 '*'.

additive_expression:
 multiplicative_expression;
 additive_expression C_AddOper multiplicative_expression.

C_AddOper:
 OP4.

shift_expression:
 additive_expression;
 shift_expression C_ShiftOper additive_expression.

C_ShiftOper:
 OPSHIFT.

relational_expression:
 shift_expression;
 relational_expression C_RelationalOper shift_expression;
 relational_expression C_InOper shift_expression;
 relational_expression holds IDENTIFIER.

C_InOper:
 in;
 '!' in.

C_RelationalOper:
 '<';
 '>';
 OPLEGE.

equality_expression:
 relational_expression;
 equality_expression C_EqualityOper relational_expression.

C_EqualityOper:

Page 47 of 59

 '==';
 '!='.

and_expression:
 equality_expression;
 and_expression C_BitAndOper equality_expression.

c_bitandoper:
 '&'.

exclusive_or_expression:
 and_expression;
 exclusive_or_expression C_BitXorOper and_expression.

C_BitXorOper:
 '̂ '.

inclusive_or_expression:
 exclusive_or_expression;
 inclusive_or_expression C_BitOrOper exclusive_or_expression.

C_BitOrOper:
 '|'.

logical_and_expression:
 inclusive_or_expression;
 logical_and_expression C_AndOper inclusive_or_expression.

C_AndOper:
 '&&'.

logical_or_expression:
 logical_and_expression;
 logical_or_expression C_OrOper logical_and_expression.

C_OrOper:
 '||'.

ArcImpliesExpression:
 logical_or_expression C_ImpliesOper logical_or_expression;
 logical_or_expression.

conditional_expression:
 ArcImpliesExpression;
 ArcImpliesExpression '?' Cexpression ':' conditional_expression.

assignment_expression:
 conditional_expression;
 unary_expression ASSOP assignment_expression;
 unary_expression Assign assignment_expression.

assign:
 '='.

cexpression:
 assignment_expression;
 Cexpression ',' assignment_expression;
 ArcExpression.

constant_expression:
 conditional_expression.

Page 48 of 59

declaration:
 struct_or_union_or_enum_specifier ';';
 typedef_decl;
 declaration_specifiers init_declarator_list ';';
 ghost '(' declaration_specifiers init_declarator_list ';' ')';
 ghost '(' declaration_specifiers init_declarator_list ')';
 assume '(' spec_predicate_list ')'.

typedef_decl:
 typedef specifier_qualifier_list ArcInvariant NewTypeName ';';
 typedef specifier_qualifier_list typedef_declarator_list ';'.

declaration_specifiers:
 STORAGECLASS declaration_specifiers;
 inline declaration_specifiers;
 specifier_qualifier_list.

specifier_qualifier_list:
 type_qualifier_list declaration_specifiers_3;
 declaration_specifiers_3.

declaration_specifiers_3:
 type_specifier;
 type_specifier type_qualifier_list.

type_specifier:
 struct_or_union_or_enum_specifier;
 preexisting_type.

preexisting_type:
 TYPEDEF_NAME;
 PREDEFTYPE;
 double_type;
 integral_type.

struct_or_union_or_enum_specifier:
 struct_or_union_specifier;
 enum_specifier.

integral_type:
 char;
 wchar_t;
 int;
 SIGNMODIFIER;
 SIGNMODIFIER char;
 SIGNMODIFIER int;
 IntLength;
 IntLength SIGNMODIFIER;
 SIGNMODIFIER IntLength;
 IntLength int;
 IntLength SIGNMODIFIER int;
 SIGNMODIFIER IntLength int.

intlength:
 long;
 short;
 long long.

double_type:
 double;
 long double.

Page 49 of 59

init_declarator_list:
 init_declarator;
 init_declarator_list ',' init_declarator.

typedef_declarator_list:
 typedef_declarator;
 typedef_declarator_list ',' typedef_declarator.

init_declarator:
 declarator OptPlacement;
 declarator OptPlacement '=' initializer.

struct_or_union_specifier:
 STRUCTORUNION IDENTIFIER '{' struct_declaration_list '}';
 STRUCTORUNION '{' struct_declaration_list '}';
 preexisting_struct_or_union_specifier.

preexisting_struct_or_union_specifier:
 STRUCTORUNION IDENTIFIER.

struct_declaration_list:
 struct_declaration;
 struct_declaration_list struct_declaration.

struct_declaration:
 specifier_qualifier_list struct_declarator_list ';';
 ghost '(' specifier_qualifier_list struct_declarator_list ';' ')';
 ghost '(' specifier_qualifier_list struct_declarator_list ')'.

struct_declarator_list:
 struct_declarator;
 struct_declarator_list ',' struct_declarator.

struct_declarator:
 declarator;
 ':' constant_expression;
 declarator ':' constant_expression.

enum_specifier:
 enum '{' enumerator_list '}';
 enum '{' enumerator_list ',' '}';
 enum IDENTIFIER '{' enumerator_list '}';
 enum IDENTIFIER '{' enumerator_list ',' '}';
 preexisting_enum_specifier.

preexisting_enum_specifier:
 enum IDENTIFIER.

enumerator_list:
 IDENTIFIER;
 IDENTIFIER '=' constant_expression;
 enumerator_list ',' IDENTIFIER;
 enumerator_list ',' IDENTIFIER '=' constant_expression.

declarator:
 pointer direct_declarator;
 null pointer direct_declarator;
 direct_declarator;
 null direct_declarator.

typedef_declarator:

Page 50 of 59

 pointer direct_typedef_declarator;
 null pointer direct_typedef_declarator;
 direct_typedef_declarator;
 null direct_typedef_declarator.

direct_declarator:
 IDENTIFIER;
 '(' declarator ')';
 direct_declarator '[' ']';
 direct_declarator '[' ']' null;
 direct_declarator '[' constant_expression ']';
 direct_declarator '[' constant_expression ']' null;
 direct_declarator '(' parameter_type_list ')' ArcWrites ArcPrecondition ArcVariant ArcReturns ArcPostAssertion;
 direct_declarator '(' ')' ArcWrites ArcPrecondition ArcVariant ArcReturns ArcPostAssertion.

direct_typedef_declarator:
 NewTypeName;
 TYPEDEF_NAME;
 wchar_t;
 '(' typedef_declarator ')';
 direct_typedef_declarator '[' constant_expression ']';
 direct_typedef_declarator '[' ']';
 direct_typedef_declarator '(' parameter_type_list ')' ArcWrites ArcPrecondition ArcVariant ArcReturns
ArcPostAssertion;
 direct_typedef_declarator '(' ')' ArcWrites ArcPrecondition ArcVariant ArcReturns ArcPostAssertion.

pointer:
 '*';
 '*' pointer_type_qualifier_list;
 '*' pointer;
 '*' pointer_type_qualifier_list pointer.

type_qualifier_list:
 const;
 volatile;
 type_qualifier_list const;
 type_qualifier_list volatile.

pointer_type_qualifier_list:
 const;
 volatile;
 array;
 null;
 pointer_type_qualifier_list const;
 pointer_type_qualifier_list volatile;
 pointer_type_qualifier_list array;
 pointer_type_qualifier_list null.

parameter_type_list:
 parameter_list;
 parameter_list ',' '...'.

parameter_list:
 parameter_declaration;
 parameter_list ',' parameter_declaration.

parameter_declaration:
 specifier_qualifier_list declarator;
 type_name;
 out specifier_qualifier_list declarator;
 out type_name.

Page 51 of 59

named_parameter_list:
 named_parameter_declaration;
 named_parameter_list ',' named_parameter_declaration.

named_parameter_declaration:
 specifier_qualifier_list declarator.

type_name:
 specifier_qualifier_list;
 specifier_qualifier_list abstract_declarator.

abstract_declarator:
 pointer;
 direct_abstract_declarator;
 pointer direct_abstract_declarator.

direct_abstract_declarator:
 '(' abstract_declarator ')';
 '[' ']';
 '[' ']' null;
 '[' constant_expression ']';
 '[' constant_expression ']' null;
 direct_abstract_declarator '[' ']';
 direct_abstract_declarator '[' ']' null;
 direct_abstract_declarator '[' constant_expression ']';
 direct_abstract_declarator '[' constant_expression ']' null;
 '(' ')' ArcWrites ArcPrecondition ArcVariant ArcReturns ArcPostAssertion;
 '(' parameter_type_list ')' ArcWrites ArcPrecondition ArcVariant ArcReturns ArcPostAssertion;
 direct_abstract_declarator '(' ')' ArcWrites ArcPrecondition ArcVariant ArcReturns ArcPostAssertion;
 direct_abstract_declarator '(' parameter_type_list ')' ArcWrites ArcPrecondition ArcVariant ArcReturns
ArcPostAssertion.

initializer:
 assignment_expression;
 '{' initializer_list '}';
 '{' initializer_list ',' '}'.

initializer_list:
 initializer;
 initializer_list ',' initializer.

statement:
 compound_statement;
 simple_statement.

simple_statement:
 IDENTIFIER ':' simple_statement;
 expression_statement;
 ArcAssertionStatement;
 jump_statement;
 pass_statement;
 switch_statement;
 if_statement;
 iteration_statement.

simple_statement_no_missing_else:
 IDENTIFIER ':' simple_statement_no_missing_else;
 expression_statement;
 ArcAssertionStatement;
 jump_statement;
 pass_statement;
 switch_statement;

Page 52 of 59

 if_statement_no_missing_else;
 iteration_statement_no_missing_else.

C_Body:
 compound_statement;
 simple_statement.

C_Body_no_missing_else:
 compound_statement;
 simple_statement_no_missing_else.

switch_statement:
 switch '(' CExpression ')' switch_body.

compound_statement:
 ScopeBegin ScopeEnd;
 ScopeBegin decl_statement_list ScopeEnd.

decl_statement_list:
 C_DeclStat;
 statement;
 decl_statement_list C_DeclStat;
 decl_statement_list statement.

c_declstat:
 declaration.

expression_statement:
 real_expression_statement;
 ';'.

real_expression_statement:
 Cexpression ';'.

if_statement:
 if '(' CExpression ')' C_Body;
 if '(' CExpression ')' C_Body_no_missing_else else C_Body.

if_statement_no_missing_else:
 if '(' CExpression ')' C_Body_no_missing_else else C_Body_no_missing_else.

switch_body:
 '{' labelled_statements_list '}'.

labelled_statements_list:
 case_labels statement;
 labelled_statements_list statement;
 labelled_statements_list case_labels statement.

case_labels:
 case constant_expression ':';
 case_labels case constant_expression ':';
 default ':';
 case_labels default ':'.

iteration_statement:
 while '(' CExpression ')' ArcLoopHeader C_Body;
 do ArcLoopHeader C_Body while '(' CExpression ')' ';';
 for '(' expression_statement ';' ')' ArcLoopHeader C_Body;
 for '(' expression_statement CExpression ';' ')' ArcLoopHeader C_Body;
 for '(' expression_statement ';' CExpression ')' ArcLoopHeader C_Body;

Page 53 of 59

 for '(' expression_statement CExpression ';' CExpression ')' ArcLoopHeader C_Body.

iteration_statement_no_missing_else:
 while '(' CExpression ')' ArcLoopHeader C_Body_no_missing_else;
 do ArcLoopHeader C_Body while '(' CExpression ')' ';';
 for '(' expression_statement ';' ')' ArcLoopHeader C_Body_no_missing_else;
 for '(' expression_statement CExpression ';' ')' ArcLoopHeader C_Body_no_missing_else;
 for '(' expression_statement ';' CExpression ')' ArcLoopHeader C_Body_no_missing_else;
 for '(' expression_statement CExpression ';' CExpression ')' ArcLoopHeader C_Body_no_missing_else.

jump_statement:
 goto IDENTIFIER ';';
 continue ';';
 break ';';
 return ';';
 return CExpression ';'.

pass_statement:
 pass.

translation_unit:
 external_declaration;
 translation_unit external_declaration.

external_declaration:
 function_definition;
 struct_or_union_or_enum_specifier ';';
 typedef_decl;
 declaration_specifiers init_declarator_list ';';
 ghost '(' declaration_specifiers init_declarator_list ';' ')';
 ghost '(' declaration_specifiers init_declarator_list ')';
 GlobalAssumption;
 GlobalAssertion.

function_definition:
 declaration_specifiers declarator compound_statement.

GlobalAssumption:
 assume '(' spec_predicate_list ')';
 assume '(' '(' named_parameter_list ')' ':' spec_predicate_list ')'.

GlobalAssertion:
 assert '(' spec_predicate_list ')';
 assert '(' '(' named_parameter_list ')' ':' spec_predicate_list ')'.

spec_expression:
 conditional_expression;
 ArcExpression.

spec_expression_list:
 spec_expression;
 spec_expression_list ';' spec_expression.

spec_predicate_list:
 spec_expression;
 spec_predicate_list ';' spec_expression.

ArcPrecondition:
 pre '(' spec_predicate_list ')' ArcPrecondition;
 Empty.

Page 54 of 59

ArcAssertionStatement:
 assert '(' spec_predicate_list ')' ';'.

ArcReturns:
 returns '(' spec_expression ')';
 Empty.

ArcPostassertion:
 post '(' spec_predicate_list ')' ArcPostAssertion;
 Empty.

ArcInvariant:
 INVARIANT '(' spec_predicate_list ')'.

ArcWrites:
 writes '(' writes_expression_list ')' ArcWrites;
 writes '(' ')' ArcWrites;
 Empty.

writes_expression_list:
 unary_expression;
 volatile;
 writes_expression_list ';' unary_expression;
 writes_expression_list ';' volatile.

ArcLoopHeader:
 ArcWrites ArcKeep ArcVariant.

ArcKeep:
 keep '(' spec_predicate_list ')' ArcKeep;
 Empty.

ArcVariant:
 decrease '(' spec_expression_list')' ArcVariant;
 Empty.

--eCv additional expression types
ArcExpression:
 THATorANY ArcBoundVariableDeclaration ':-' conditional_expression;
 those ArcBoundVariableDeclaration ':-' conditional_expression;
 forall ArcBoundVariableDeclarations ':-' conditional_expression;
 exists ArcBoundVariableDeclarations ':-' conditional_expression;
 for thoseArcBoundVariableDeclaration ':-' conditional_expression yield conditional_expression;
 for ArcBoundVariableDeclaration yield conditional_expression.

ArcBoundVariableDeclarations:
 ArcBoundVariableDeclaration;
 ArcBoundVariableDeclarations ';' ArcBoundVariableDeclaration.

ArcBoundVariableDeclaration:
 specifier_qualifier_list declarator;
 IDENTIFIER in shift_expression.

C_ImpliesOper:
 '=>'.

ScopeBegin:
 '{'.

ScopeEnd:
 '}'.

Page 55 of 59

NewTypeName:
 IDENTIFIER.

-- String concatenation (when not handled by the preprocessor)
c_stringliteral:
 EMPTYSTRINGLITERAL;
 NONEMPTYSTRINGLITERAL;
 c_stringLiteral EMPTYSTRINGLITERAL;
 c_stringLiteral NONEMPTYSTRINGLITERAL.

-- Extension for some C compilers for embedded processors
OptPlacement:
 '@' conditional_expression;
 Empty.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 56 of 59

Appendix G

Main differences between eCv C and
MISRA-C 2004
Here is a list of the main differences between the language accepted by eCv in C90 mode and MISRA-C
2004. Numbers in brackets are the corresponding MISRA rule numbers.

MISRA rules not fully enforced by eCv
The MISRA-C 2004 standard has 141 rules constraining how the C language may be used. Compliance with about
128 of these rules can in principle be checked by source code analysis, with formal verification needed in the case of
a few rules. eCv currently checks 52 MISRA rules in full and 16 rules in part. Future versions of eCv may support
additional MISRA compliance checks.

The following lists the MISRA rules that eCv allows to be violated without generating a warning or error message.

l eCv does not fully enforce rule 1.1 because it supports a few language extensions, such as inline functions,
long long int type, and HiTech C compiler placement syntax for variables.

l Rules 1.3, 1.4 and 1.5 are outside the scope of source code static checking.

l eCv does not enforce rule 2.1.

l eCv permits comments introduced by // (2.2).

l eCv does not enforce rule 2.4.

l The documentation rules (3.x) are outside the scope of source code static checking. However, the behaviour
of integer division is included when specifying the compiler/platform behaviour (3.3).

l eCv does not enforce rules 5.4, 5.5, 5.6 and 5.7.

l eCv enforces rule 6.1 and 6.2 to the extent that conversions in either direction between other integral types
and plain char must be made explicit.

l eCv does not enforce rule 6.3.

l eCv does not require prototypes for functions whose definitions are visible at each place where they are called
(8.1).

l eCv permits objects to be defined in header files, in particular inline function declarations (8.5).

l eCv does not enforce rules 8.6, 8.7, 8.8, 8.9, 8.10, 8.11 or 8.12.

l eCv does not enforce rule 9.3.

l eCv enforces part (a) of rules 10.1 and 10.2 but not parts (b), (c) or (d).

l eCv does not enforce rules 10.3, 10.4 or 10.5.

l eCv does not enforce rules 12.1, 12.4, 12.5 or 12.10.

l eCv cannot enforce rule 12.11 because it depends on detailed knowledge of the behaviour of the compiler you
will be using. Wrap-around will not occur when using the eCv preprocessor.

l eCv does not enforce rule 12.13.

l eCv allows assignment-expressions to be used within expressions yielding a Boolean value (13.1), provided
that an assignment-expression is not used where a Boolean value is required. For example, "(a = b) && c" is
forbidden, but "(a = b) == 0" is permitted.

Page 57 of 59

l eCv allows floating point expressions to be tested for equality and inequality (13.3).

l eCv treats a for-loop as if is were an equivalent while-loop, therefore it does not place additional restrictions on
the expressions in a for-loop header (13.4, 13.5) or on modifying for-loop variables (13.6).

l eCv does not prohibit Boolean operations whose results are invariant, however they will typically lead to "given
false" warnings during verification, indicating unreachable code (13.7).

l eCv does not guarantee to detect unreachable code (14.1), however it will typically lead to "given false"
warnings during verification.

l eCv does not check that a non-null statement either has a side effect or causes control flow to change (14.2).

l eCv does not check rule 14.3. You can use pass to introduce a null statement explicitly.

l eCv supports continue (14.5).

l eCv allows multiple break statements in a loop (14.6).

l eCv allows multiple return statements in a function (14.7).

l An if..else if.. construct does not need to have a final else clause (14.10).

l A case clause in a switch statement need not end in "break;" if it cannot fall through, for example if it ends
in an if-statement for which both branches end in a jump statement (15.2).

l eCv does not enforce rule 15.5.

l A switch statement need not have a default label; and if it does have a default label, it need not be the last
case (15.3).

l eCv only allows recursive functions if a recursion variant is declared (16.2).

l eCv does not enforce rule 16.3.

l eCv treats a function or function prototype declared with an empty parameter list as having no parameters; it
does not insist on the parameter list being declared as "(void)" (16.5).

l eCv does not warn about pointer parameters that could have been declared const but were not (16.7).

l eCv does not enforce rule 16.9.

l eCv does not check that error information returned by a function is tested, provided the specification is met
(16.10).

l eCv permits pointer arithmetic on array pointers (17.4), however verification of pointer arithmetic typically
requires additional annotation, therefore pointer arithmetic should be avoided as far as possible.

l eCv does not place a limit on pointer indirection, however compliance with the MISRA limit of 2 is
recommended (17.5).

l eCv does not enforce rule 17.6.

l eCv permits unions, provided they are not used to convert between different types (18.4).

l eCv does not enforce preprocessing rules 19.1, 19.2, 19.4, 19.5, 19.7, 19.9, 19.10, 19.13 or 19.15.

l eCv partially enforces rule 20.1 but does not enforce the remaining library rules (20.x).

Notes:

1. The above assumes that the "Enable MISRA warnings" feature is turned on; otherwise, checks for a few
MISRA rules are relaxed or disabled.

2. The commenting rules (2.x) and preprocessor rules (19.x) are only checked if you are using eCv's own
preprocessor, not if you are using your compiler's preprocessor.

3. Compliance with rules 1.2, 12.2, 12.8, 17.2, 17.3 and 21.1 can only be ensured if verification is run and the
verification conditions corresponding to these rules are successfully discharged by the theorem prover.

eCv rules that are stronger than the MISRA rules

Page 58 of 59

l eCv has a Boolean type bool. The underlying type of an operator expression in which the operator is a

comparison or logical operator is bool. Implicit conversions between bool and other types other than 1-bit
unsigned int bit fields generate warnings.

l eCv has strongly-typed enumerations. The underlying type of an enumeration constant or a variable of
enumeration type is that type, not int. Implicit conversions from enumeration types to int, long int and long
long int do not generate warnings. Implicit conversions from integral to enumeration types do generate
warnings.

l Type wchar_t is treated as a separate type by eCv, not as a typedef for some integral type. It is treated in a
similar way to plain char, i.e. all conversions between wchar_t and other types must be explicit.

l Pointers to arrays much be qualified by the array keyword when they are declared.

l Pointers that are allowed to take the null pointer value must be qualified by the null keyword when they are
declared.

l eCv will warn about conversions between different pointer types, except for conversions to void*.

l eCv does not allow conditional expressions to have side effects.

l eCv does not allow you to take the address of a member of a union, or of any part of a member of a union.

l eCv does not allow you to use the sizeof operator with a character literal operand.

 TOC

eCv Manual, Version 5.0, September 2011.
© 2010 onwards Escher Technologies Limited. All rights reserved.

Page 59 of 59

	eCv_pdf_title
	eCv_Manual
	eCv_01_Getting_Started
	eCv_02_Compiling
	eCv_03_Verifying
	eCv_04_Specifications
	eCv_05_Additional
	eCv_06_Ghosts
	eCv_Appx_A
	eCv_Appx_B
	eCv_Appx_C
	eCv_Appx_D
	eCv_Appx_E
	eCv_Appx_F
	eCv_Appx_G

