
Verification Conditions Generated
by Escher Verification Studio

1 Revision history

Version Date Author Description

1.1 2002-05-02 NE Initial version

1.2 2002-06-26 NE Updated to latest “that” and “any” obligations

1.3 2002-08-09 DC Added introduction; made minor corrections;
reformatted

1.4 2003-12-10 DC Updated to version 2.10. Ordered the obligations
alphabetically by name.

1.5 2004-11-05 DC Updated for version 3.0

1.6 2010-03-03 DC Updated for version 4.02

1.7 2010-12-17 DC Updated for version 5 changes and Escher C Verifier

1.8 2011-05-10 DC Further update for Escher C Verifier

1.9 2011-10-03 DC Updated for Escher Verification Studio 5.0

2 Introduction
This document lists all the verification conditions generated by Escher Verification Studio
version 5.

In the following, each type of verification condition is introduced by name. The names of
verification conditions in this document correspond to the names that Escher Verification
Studio uses in its informational output and in the proof and unproven output files. For each
verification condition, we give a description, a primary location (i.e. source file/row/column)
and sometimes also a secondary location. The primary location is the location given at the
start of the warning message. The secondary location is the one that appears in brackets,
typically preceded by the words “defined at”.

3 List of verification conditions

3.1 All qualifying elements in operand of 'that' are equal
Generated for every that expression to ensure that all elements in the collection that satisfy
the predicate are equal. Primary location is the location of the that expression.

3.2 Arithmetic result of operator […] is within limit of type […]
Used by eCv only. Generated for arithmetic operators whose result may overflow.

Verification Conditions Generated by Escher Verification Studio Page 1

3.3 Assertion satisfies inherited assertion
Generated wherever: a method declared with define or redefine also declares an assertion,
does not use the ‘…’ form of assertion, and the original method was declared with an
assertion. In this case the new assertion must imply the original assertion (i.e. be stronger).
Primary location is that of the new assertion; secondary location is that of the original
assertion.

3.4 Assertion valid
Generated for every assert statement, whether within an expression, a postcondition or a
statement list (but not a post-assertion). The location is that of the assertion.

3.5 At least one guard is true
Used by Perfect Developer only. Generated for every conditional expression, conditional
postcondition and if statement with no empty guard. The location is that of the expression or
statement.

3.6 Cannot break constraint via selector
Used by Perfect Developer only. Generated for every selector that may return a variable of a
constrained type, or a sub-component of a variable of constrained type, to check that all
values of the type of the selector satisfy the constraint. The primary location is that of the
selector; the secondary location is that of the declaration of the constraint.

3.7 Class invariant satisfied
Generated after the postcondition of every modifying member schema and constructor, and
when self after … has been satisfied, for each class invariant declared in the enclosing class.
Primary location is that of the final part of the postcondition; secondary location is that of the
class invariant.

3.8 Data currently holds union member [name]
Used by eCv only. Generated whenever a member field of a value of union type is retrieved.

3.9 Declared number of array elements either matches number in
initial value or is greater and element type can be default-
initialized

Used by eCv only. Generated for any array declaration that has both a declared number of
elements and an initializer, if the element type does not contain any fields that definitely
cannot be default-initialized (e.g. non-nullable pointer fields). Verification conditions of this
type are not generated when the initializer obviously has a suitable number of elements.

3.10 Declared number of array elements matches number in initial
value (element type cannot be default-initialized)

Used by eCv only. Generated for any array declaration that has both a declared number of
elements and an initializer, if the element type contains one or more fields that definitely
cannot be default-initialized (e.g. non-nullable pointer fields). Verification conditions of this
type are not generated when the initializer obviously has the correct number of elements.

Verification Conditions Generated by Escher Verification Studio Page 2

3.11 Expressions modified by schema are independent
Used by Perfect Developer only. Generated for each call to a schema that modifies more than
one object, to check that these objects are independent of each other. The location is that of
the schema call.

3.12 Guarded variable [name] is initialised, or its ‘when’ guard has
not become true

Used by Perfect Developer only. Generated every time a guarded data member of a class is
accessed. Primary location is that of the call; secondary location is that of the guard condition.

3.13 History invariant satisfied
Used by Perfect Developer only. Generated after the postcondition of every modifying
member schema, for each history invariant declared in the enclosing class or inherited from a
parent class, excluding those history invariants that declare the schema exempt. [Added at
version 4.02]

3.14 Implementation has not changed abstract data
Used by Perfect Developer only. Generated for every implementation of a method whose
specification cannot modify self (e.g. a function), but whose implementation modifies internal
data. The verification condition checks that the values of the abstract data are unchanged. The
location is that of the end of the implementation.

3.15 Inherited precondition satisfies new precondition
Used by Perfect Developer only. Generated wherever a method declared with define or
redefine also declares a precondition. In this case the new precondition must be implied by
the precondition of the original method (i.e. the new precondition must be the same as the old
or be weaker). Primary location is that of the new precondition; secondary location is that of
the original precondition

3.16 Intermediate object satisfies class invariant
Generated every time an intermediate instance of self or it for which it is possible to break the
class invariant is used in any way, except to access a variable member or as an operand of the
equality operator. Primary location is that of the self or it expression; secondary location is
that of the invariant.

3.17 Internal class invariant satisfied
Used by Perfect Developer only. Generated at the end of every implementation that modifies
internal data of a class, to check that each internal invariant is satisfied. The primary location
is that of the end of the implementation; the secondary location is that of the invariant being
checked.

3.18 Jump satisfies precondition at label [name]
Generated at each goto statement to check that the precondition of the label being jumped to
is true. The primary location is that of the goto statement; the secondary location is that of the
label.

Verification Conditions Generated by Escher Verification Studio Page 3

3.19 Left identity declared for operator [operator] is valid
Used by Perfect Developer only. Generated for any operator declaration that includes the
declaration of a left identity, to verify that the expression given really is a left identity. The
primary location is that of the operator property declaration.

3.20 Loop body establishes end condition or decreases variant
Generated at the end of a loop body to check that either the until condition is true (i.e. the
loop has terminated) or the variant has decreased. The primary location is that of the end of
the loop body; the secondary location is that of the variant.

3.21 Loop body establishes end condition or preserves validity of
variant

Generated at the end of a loop body to check that either the until condition is true (i.e. the
loop has terminated) or that each integer variant component is non-negative. The primary
location is that of the end of the loop body; the secondary location is that of the variant
component being checked.

3.22 Loop body only modifies objects in 'change' list
Used by Perfect Developer only. Generated at the end of a loop body to check that only
objects or parts of objects specified in the change list were actually changed by the loop
body. The primary location is that of the end of the loop body; the secondary location is that
of the change list.

3.23 Loop body preserves loop invariant
Generated at the end of a loop body to check that the invariant is true after each iteration. The
primary location is that of the end of the loop body; the secondary location is that of the
invariant being checked.

3.24 Loop initialisation establishes end condition or a valid variant
Generated at every loop statement to check that when the loop statement is reached (i.e.
before the body has been executed at all), either the until condition is true (i.e. the loop body
will not be executed at all), or all integer components of the variant (decrease part) are non-
negative. The primary location is that of the loop; the secondary location is that of the variant
component.

3.25 Loop initialisation establishes loop invariant
Generated at every loop statement to check that the stated invariant is true when the loop
statement is reached (i.e. before the body has been executed at all). The primary location is
that of the loop statement; the secondary location is that of the invariant being checked.

3.26 Method assertion implies 'require' assertion
Used by Perfect Developer only. Generated where a template with require declarations is
instantiated. We check that each of the methods’ assertions are implied by the assertions
declared by the actual class methods. The primary location is that of the point of instantiation
of the template; the secondary location is that of the require declaration.

Verification Conditions Generated by Escher Verification Studio Page 4

3.27 Method precondition is implied by 'require' precondition
Used by Perfect Developer only. Generated where a template with require declarations is
instantiated. We check that each of the actual class methods’ preconditions is implied by the
preconditions given in the require declaration. The primary location is that of the point of
instantiation of the template; the secondary location is that of the require declaration.

3.28 Modified object is in current writes-clause
Used by eCv only. Generated when a nonlocal variable is modified and the identity of the
variable being modified is not static, for example when writing through a pointer.

3.29 Nullable pointer expression is not null
Use by eCv only.Generated when a pointer expression whose type includes the null pointer is
required to be non-nul, either because of a not_null(...) cast or because it is dereferenced.

3.30 Objects modified in parallel are independent
Used by Perfect Developer only. Generated for parallel postconditions (i.e. where conditions
are combined with ‘,’ or ‘&’, and forall postconditions). The verification condition checks
that the objects modified by each component of the condition are independent of each other.
The forall postcondition with bag or seq bound also generates the verification condition that
the collection is unique. Location is that of the postcondition.

3.31 Only variables modified in specification are modified by
implementation

Used by Perfect Developer only. Generated for every schema with an implementation, to
check that every variable and component of a variable not specified as changed in the
postcondition (or specified as changed only in certain circumstances) is unchanged by the
implementation (or is changed only in the same circumstances as the postcondition specifies).
The primary location is that of the done statement (or the end of the implementation); the
secondary location is that of the postcondition.

3.32 Operand of [that | any] has at least one qualifying element
Generated at every any expression and every that expression with a condition. For a that or
any with a condition, the verification condition checks that there exists an element of the
collection that satisfies the condition. For an any with no condition we simply check that the
collection is non-empty. The location is that of the any or that expression.

3.33 Operand of 'is' within specified type
Used by Perfect Developer only. Generated for every is cast, to check that the type of the
expression is as stated. Location is that of the cast.

3.34 Operand of 'over' has at least one element
Generated for every op over expression if no left identity has been declared for op, to check
that the collection is non-empty. The location is that of the expression.

3.35 Operator [operator] is associative
Used by Perfect Developer only. Generated for every operator declaration which is declared
as having the associative property to verify that a op (b c) = (a op b) op c. The location is
that of the property declaration.

Verification Conditions Generated by Escher Verification Studio Page 5

3.36 Operator [operator] is commutative
Used by Perfect Developer only. Generated for every operator declaration which is declared
as having the commutative property to verify that a op b = b op a. The location is that of the
property declaration.

3.37 Operator [operator] is idempotent
Used by Perfect Developer only. Generated for every operator declaration which is declared
as having the idempotent property to verify that a op a = a. The location is that of the
property declaration.

3.38 Operator '~~' is 'total'
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ and
declares it to be total to check the property x~~y = same@rank ==> x = y. Location is that
of the operator declaration.

3.39 Operator '~~' is reflexive
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ to
check the property x~~x = same@rank. Location is that of the operator declaration.

3.40 Operator '~~' is transitive
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ to
check the property x~~y = y~~z ==> x~~y = x~~z. Location is that of the operator
declaration.

3.41 Operator '~~' refines inherited definition
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ in a
class with an ancestor that also defines the operator ~~ to check that the new definition is a
refinement of the ancestor definition, i.e. for any pair of operands for which the ancestor
definition returns above@rank or below@rank, the new definition returns the same value.
The primary location is that of the operator declaration; the secondary location is that of the
ancestor operator declaration.

3.42 Operator '~~' satisfies first symmetry condition
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ to
check the properties:

x~~y = same@rank ==> y~~x = same@rank
Location is that of the operator declaration.

3.43 Operator '~~' satisfies second symmetry condition
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ to
check the properties:

x~~y = above@rank ==> y~~x = below@rank
Location is that of the operator declaration.

3.44 Operator '~~' satisfies third symmetry condition
Used by Perfect Developer only. Generated wherever the user defines the operator ~~ to
check the properties:

Verification Conditions Generated by Escher Verification Studio Page 6

x~~y = below@rank ==> y~~x = above@rank
Location is that of the operator declaration.

3.45 Post-assertion valid
Generated whenever a post-assertion is declared (other than in a deferred method) or inherited
by a method declaration. The primary location is that of the end of the postcondition or
function definition; the secondary location is that of the post-assertion being checked.

3.46 Postcondition satisfied when function returns
Used by eCv only. Generated for C functions that have both a postcondition and a body. The
primary location is that of the end of the function body; the secondary location is that of the
postcondition being checked.

3.47 Postcondition specifies value for uninitialised data
Generated for all constructors and schemas with out parameters. A check is generated for
each uninitialised data member or out parameter to ensure that it has a value specified for it
before being used. The location is that of the postcondition.

3.48 Precondition at label [name] satisfied after preceding
statement

Generated at each labelled statement that can be reached by fall-through from the preceding
statement, to check that the precondition is true at this point. The location is that of the label.

3.49 Precondition of [name] satisfied
Generated at the point of call to any function, operator, selector, constructor or schema with a
precondition. Primary location is that of the call; secondary location is that of the
precondition.

3.50 Precondition of 'absurd' declaration is always false
Used by Perfect Developer only. Generated for every absurd declaration to check that the
precondition inherited for that method is always false given the invariants in the class
containing the declaration. The primary location is that of the declaration; the secondary
location is that of the inherited precondition.

3.51 Property satisfied
Used by Perfect Developer only. Generated for every property declaration. Location is that
of the assertion being checked.

3.52 Return value satisfies specification
Generated at every value statement to check that the given value satisfies the specification.
The primary location is that of the value statement; the secondary location is that of the
specification of the value.

3.53 Selector still returns assigned value after assignment
Generated for every selector declaration to check that changing the value returned cannot
affect which object the selector should return (e.g. if the selector contains a conditional, the
branch selected cannot be changed by changing the value returned by the selector). The
location is that of the selector declaration.

Verification Conditions Generated by Escher Verification Studio Page 7

3.54 Specification satisfied at ‘done’
Generated at every done statement to check that the postcondition has been achieved. The
primary location is that of the done statement; the secondary location is that of the
postcondition.

3.55 Specification satisfied at end of implementation
Generated at the end of every implementation that does not end with a done or value
statement to check that the postcondition has been achieved. The primary location is that of
the done or value statement; the secondary location is that of the postcondition.

3.56 Type constraint for [type] satisfied
Used by Perfect Developer only. Generated whenever a value is assigned to a variable with a
more constrained type. The primary location is that of the postcondition; the secondary value
is that of the declaration of the constraint.

3.57 Type constraint satisfied
Generated in various contexts where a value is required to conform to a more constrained
type.

3.58 Type constraint satisfied in conversion from [type] to [type]
Generated for any explicit or implicit conversion to a constrained type.

3.59 Variable [name] is not accessed unless its ‘when’ guard is
true

Used by Perfect Developer only. Generated at each access to a variable that was declared with
a when-guard, to ensure that the guard is true. Primary location is that of the variable access;
secondary location is that of the variable declaration.

3.60 Variant decreases
Generated at the point of each recursive call. Checks the variant of the called method is less
than the variant of the calling method. Primary location is that of the recursive call; secondary
location is that of the variant of the called method.

3.61 Variant non-negative
Generated for all recursion variants with integer components. Assumes the method
precondition. Location is that of the variant component.

End of document

Verification Conditions Generated by Escher Verification Studio Page 8

	1 Revision history
	2 Introduction
	3 List of verification conditions
	3.1 All qualifying elements in operand of 'that' are equal
	3.2 Arithmetic result of operator […] is within limit of type […]
	3.3 Assertion satisfies inherited assertion
	3.4 Assertion valid
	3.5 At least one guard is true
	3.6 Cannot break constraint via selector
	3.7 Class invariant satisfied
	3.8 Data currently holds union member [name]
	3.9 Declared number of array elements either matches number in initial value or is greater and element type can be default-initialized
	3.10 Declared number of array elements matches number in initial value (element type cannot be default-initialized)
	3.11 Expressions modified by schema are independent
	3.12 Guarded variable [name] is initialised, or its ‘when’ guard has not become true
	3.13 History invariant satisfied
	3.14 Implementation has not changed abstract data
	3.15 Inherited precondition satisfies new precondition
	3.16 Intermediate object satisfies class invariant
	3.17 Internal class invariant satisfied
	3.18 Jump satisfies precondition at label [name]
	3.19 Left identity declared for operator [operator] is valid
	3.20 Loop body establishes end condition or decreases variant
	3.21 Loop body establishes end condition or preserves validity of variant
	3.22 Loop body only modifies objects in 'change' list
	3.23 Loop body preserves loop invariant
	3.24 Loop initialisation establishes end condition or a valid variant
	3.25 Loop initialisation establishes loop invariant
	3.26 Method assertion implies 'require' assertion
	3.27 Method precondition is implied by 'require' precondition
	3.28 Modified object is in current writes-clause
	3.29 Nullable pointer expression is not null
	3.30 Objects modified in parallel are independent
	3.31 Only variables modified in specification are modified by implementation
	3.32 Operand of [that | any] has at least one qualifying element
	3.33 Operand of 'is' within specified type
	3.34 Operand of 'over' has at least one element
	3.35 Operator [operator] is associative
	3.36 Operator [operator] is commutative
	3.37 Operator [operator] is idempotent
	3.38 Operator '~~' is 'total'
	3.39 Operator '~~' is reflexive
	3.40 Operator '~~' is transitive
	3.41 Operator '~~' refines inherited definition
	3.42 Operator '~~' satisfies first symmetry condition
	3.43 Operator '~~' satisfies second symmetry condition
	3.44 Operator '~~' satisfies third symmetry condition
	3.45 Post-assertion valid
	3.46 Postcondition satisfied when function returns
	3.47 Postcondition specifies value for uninitialised data
	3.48 Precondition at label [name] satisfied after preceding statement
	3.49 Precondition of [name] satisfied
	3.50 Precondition of 'absurd' declaration is always false
	3.51 Property satisfied
	3.52 Return value satisfies specification
	3.53 Selector still returns assigned value after assignment
	3.54 Specification satisfied at ‘done’
	3.55 Specification satisfied at end of implementation
	3.56 Type constraint for [type] satisfied
	3.57 Type constraint satisfied
	3.58 Type constraint satisfied in conversion from [type] to [type]
	3.59 Variable [name] is not accessed unless its ‘when’ guard is true
	3.60 Variant decreases
	3.61 Variant non-negative

