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Abstract.  In recent years, large sectors of the software development 
industry have moved from the procedural style of software 
development to an object-oriented style. Safety-critical software 
developers have largely resisted this trend because of concerns about 
verifiability of object-oriented systems. This paper outlines the 
benefits offered by object technology and considers the key features 
of the object-oriented approach from a user’s perspective. We review 
the main issues affecting safety and propose a paradigm – Verified 
Design-by-Contract – that uses formal methods to facilitate the safe 
use of inheritance, polymorphism, dynamic binding and other 
features of the object-oriented approach. An outline of Perfect 
Developer – a tool supporting the Verified Design-by-Contract 
paradigm – is included. 
 

1 Introduction 
In recent years there has been a substantial move from procedural to object-
oriented approaches in many sectors of the software development industry. The 
principal advantage of the object-oriented approach is the ease with which reusable 
components and application frameworks can be created. 

Although the benefits of object technology have been oversold in some quarters, 
most studies indicate that software development companies moving to object 
technology have at worst maintained their previous productivity (Potok et al 1999) 
and at best increased it by several times (Port & McArthur 1999, Mamrak & Sinha 
1999). The greatest productivity gains come from re-using components or 
frameworks from one project to another. This suggests that even if a company 
switching to object technology sees little saving in the short term, it will gain in the 
longer term as the opportunity for re-use arises. Our own experience is that in some 
application areas at least, an object-oriented design is significantly simpler and 
faster to implement than a procedural design, regardless of re-use; provided that 



the development staff are already experienced in object technology. We have also 
found object-oriented designs easier to extend to meet new requirements. 

Despite the potential benefits, safety-critical software developers have largely 
avoided object-oriented methods, preferring instead to use procedural or modular 
approaches. However, a number of companies in safety-critical sectors are now 
moving to object-oriented software development, or planning such a move. This is 
particularly evident in the North American aerospace community. In recognition of 
this trend, a number of interested parties including the Federal Aviation 
Administration and NASA have set up the Object Oriented Technology in Aviation 
(OOTiA) programme to address safety and certification issues when object-
oriented software is used in airborne applications. 

This paper considers the reasons behind the slow uptake of object technology by 
the safety-critical software development community. We describe how the 
coupling of an existing design technique with formal verification allows the most 
powerful features of object technology to be safely used, even in critical 
applications. We have developed a toolset that employs modern automated 
reasoning technology to obtain a very high degree of automated proof, in order to 
make formal verification economic even for less critical software. The use of 
formal specifications also makes automatic code generation possible, eliminating 
coding errors and providing greater overall productivity than a non-formal 
approach in many cases. All of this makes it easier for developers to create safe 
software. 

 

2 Features of Object-Oriented Technology 
There is general agreement that the essential attributes of the object-oriented 
approach to software development include the following: 

 
• Encapsulation: the process of encapsulating data and the operations pertaining 

to that data in a single entity such that the data cannot be publicly manipulated 
other than via the published operations. The template describing such an entity 
is called a class and plays the role of a type in procedural languages. Instances 
of a class are called objects. 

• Abstraction: the process of hiding the unimportant details of an object from its 
users so that only the essential features that characterize it remain. The process 
of abstraction is greatly helped by encapsulation, since the details of how the 
data is represented inside an object can be hidden from its users. 

• Inheritance: the principle of defining new classes by inheriting existing 
classes, adding new data and/or operations and possibly redefining existing 
operations. Some languages support single inheritance, while others support 
multiple inheritance (i.e. a class declaration may inherit more than one other 
class). 



• Polymorphism: the principle that where some variable or similar entity is 
declared as being an instance of some class, then at run-time it may be 
permissible to substitute an instance of a different class derived from the 
original by inheritance. 

• Dynamic binding (also known as dynamic dispatch): the principle that when a 
variable or similar entity is polymorphic and is passed as a parameter in a call 
to a function or procedure, the exact function or procedure called may not be 
statically determined but may depend at run-time on the class of which the 
variable is an instance. Most object-oriented languages support single dynamic 
dispatch (i.e. the choice of function or procedure called depends on at most 
one parameter, which is typically distinguished syntactically from the other 
parameters); a few support multiple dynamic dispatch. 

 
Abstraction and encapsulation are highly beneficial features to have in a 

programming or modelling language and are likely to enhance safety. Indeed, the 
widely used modular programming approach captures both these features. 
Abstraction and encapsulation also facilitate formal analysis, since when analysing 
code that uses a class, the abstract specification of the class is sufficient to capture 
its significant behaviour, so that the detailed implementation of the class can be 
disregarded. Separately, the class can be analysed to ensure that its detail conforms 
to its abstract specification. 

Inheritance does not in itself cause any particular difficulty for program 
analysis, since a class derived by inheritance could be expanded by substituting the 
member declarations of the inherited class(es) into the definition of the derived 
class. However, the combination of inheritance, polymorphism and dynamic 
binding is not directly amenable to traditional static analysis, which typically 
requires that the target of each procedure call is statically known. 

One solution for engineers of safety-critical software who wish to adopt object 
technology is to eschew dynamic binding. This may be a reasonable way of getting 
started with object technology. However, dynamic binding has been found to be 
such a powerful and useful feature that this is surely not the best long-term 
approach. Better instead to seek new verification techniques that can ensure 
dependability even in the presence of dynamic binding. 

3 An Object-Oriented Example 
We have heard it claimed that object technology (and dynamic binding in 
particular) is not useful in most safety-critical software. While there may be some 
systems for which object technology has little to offer, there are many others that 
clearly could benefit from object technology provided that safety concerns can be 
addressed. 

As a working example for the purposes of this paper, consider a glass-cockpit 
flight instrument display with the following requirements: 



• A number of flight instruments (e.g. airspeed indicator, altimeter, horizontal 
situation indicator) are to be displayed on a single screen. 

• The details of which instrument is displayed in which position should not be 
fixed in the software but should be easy to change. This will allow a family of 
systems to use the same software and also provide for a limited amount of 
installation-time or in-flight customisation (e.g. a choice of presentation, or a 
choice between two different instruments that convey the same information). 

• There may be other information (textual information, alarms etc.) to be 
displayed on the screen. 

 
This design outline was inspired by an example given in the OOTiA draft 

handbook (OOTiA 2003). To the object-oriented design engineer, there is a natural 
inheritance hierarchy in this description. At the root is an abstract class 
representing any self-contained displayed entity, which we will name 
DisplayedElement. Inheriting from this we might have a concrete class 
TextElement and another class FlightInstrument. Concrete classes such as 
AirspeedIndicator will be derived from FlightInstrument. 

The complete glass-cockpit display can be represented by another class Display 
whose data comprises a collection of objects derived from DisplayedElement, each 
associated with the corresponding screen coordinates. To initialise the screen, we 
provide a method drawAll that iterates through the collection, drawing each object. 
This suggests a dynamically bound call to a draw method1 that is separately 
defined for each concrete class derived from DisplayedElement. Note that the draw 
method in class DisplayedElement is declared but not defined, making it an 
abstract method (sometimes referred to as a pure virtual method). Likewise, the 
class DisplayedElement is an abstract class (meaning that it cannot be instantiated 
but serves only as a base for other classes to inherit). Classes derived from 
DisplayedElement will provide their own definitions of the draw method. 

The architecture described above provides the flexibility we need in that any 
sort of DisplayedElement can occur at any position in the collection. Furthermore, 
if we wish to add a completely new type of flight instrument to this design, we 
need only define a corresponding class derived from FlightInstrument and provide 
a means to store an instance of this class in the collection. 

Without dynamic binding, we would have to use a “switch” statement or similar 
in place of each call to draw so as to select the correct procedure according to the 
actual type of the element we wish to display. The same goes for any other 
operation that depends on the element type. If we add a new type of flight 
instrument, we need to update every one of these switch statements to handle the 
new type, thereby spreading the modification throughout the code instead of 
concentrating it in one place. Thus, the object-oriented approach makes it easier to 

                                                           
1 Functions and procedures are referred to as methods in object-oriented software 

development 



extend the system in a safe manner that leaves almost all of the existing system 
unaltered. 

This example provides several opportunities for re-use. The application 
framework (comprising the class representing the collection of instruments and 
associated scheduling of draw operations) can be re-used for different displays 
with widely differing selections of flight instruments. The flight instrument classes 
could likewise be re-used with a different framework. Several flight instruments 
may share some common presentation details (e.g. style of frame and caption), so 
these features may be implemented in a common parent class (e.g. 
SquareFlightInstrument). 

There is a standard language – the Unified Modeling Language (UML) – for 
describing graphically the relationships between classes (and many other aspects of 
object-oriented systems). A UML class diagram of the system described above is 
shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Class diagram for flight instrument display system 



4 The Design-By-Contract Paradigm 

4.1 Basic principles of Design-by-Contract 

The term “Design By Contract” (DBC) appears to have been conceived by 
Bertrand Meyer of Interactive Software Engineering (Meyer 1988) and the term is 
claimed by that company as a trademark. However, the principles of DBC go back 
to Floyd-Hoare Logic (Hoare 1969), the essence of which can be summarised as 
follows. 

A program statement S exists to achieve some desired postcondition R after its 
execution (where R is a predicate over the program state; in other words, R is a 
mathematical description of the state that the programmer intends after S is 
executed). Typically, the statement S will only accomplish the state R if some 
precondition P is satisfied before S is executed (P is another predicate over the 
program state). Given P, R and S, then in order to be certain that R will be satisfied 
after executing S, we need to be sure of two things: 

 
1. Provided P is initially satisfied, executing the program fragment S will 

terminate in a state satisfying R; and 
2. P is always satisfied immediately before S is executed. 

 
In Design By Contract, this principle is applied to the case where S is a call to a 

method. For each method, its precondition P and its postcondition R are 
documented. The correctness requirements are expressed in the form of a contract 
between the method and its callers, like this: 

 
• The method promises that provided it is called in a state satisfying its 

precondition P, then it will return in a state satisfying its postcondition R. 
• All callers of the method promise to satisfy P at the point of call; in return, they 

are entitled to assume that the call will complete and that R is satisfied on 
return. 
 
Returning to our example, let’s look at how DBC may be applied to the draw 

method of class DisplayedElement and its descendants. We assume that the 
parameters to draw include the coordinates of a rectangular portion of the screen in 
which the element is to be displayed.  The contract might look like this: 

 
• The caller of draw promises that the size of the rectangle passed to draw is at 

least the minimum needed to display the element; 
• The implementation of draw promises that on return, the element is displayed in 

that rectangle and the remainder of the screen is unchanged. 
 



It is frequently the case that the instance variables of a class should satisfy some 
property at all times. In our example, we might wish that in the Display class, the 
rectangles associated with the elements to be included on the display never overlap 
and are always wholly contained within the visible area. Such a property would 
logically be part of the postcondition of every constructor2 for the class and part of 
both the precondition and the postcondition of every method of the class. Rather 
than explicitly state the property in all these preconditions and postconditions, it is 
simpler and clearer to state it as a class invariant instead.  

4.2 Design-by-Contract with Dynamic Binding 

The Design-by Contract paradigm can also be applied to dynamically bound 
method calls. We will confine ourselves to the case of single dynamic dispatch. 

The general situation is as follows. The program code contains a call to a 
nominal target (e.g. method draw of the abstract class DisplayedElement); but this 
is interpreted at run-time as a call to some actual target that depends on the run-
time type of the object concerned (e.g. if the object concerned has run-time type 
AttitudeIndicator, the actual target will be the version of draw defined in that 
class). Recall that the correctness of a program segment involving a method call 
depends on the following conditions: 

 
1. The caller satisfies the precondition of the called method. 
2. The method guarantees to satisfy its declared postcondition, provided that its 

precondition was satisfied. 
3. On return, the caller may assume that the postcondition of the method holds. 

 
If the method is dynamically bound, we have a potential difficulty with 

conditions 1 and 3 because the actual target method is not statically known (and 
hence we cannot determine its precondition and postcondition). Indeed, one of the 
features of object-oriented development is that we can add new classes (such as 
new classes derived from FlightInstrument) and that the old client code (for 
example the drawAll method of class Display) will work with them unaltered. 

The solution is for the caller to refer to the contract of the nominal target instead 
of the (unknown) actual target. Our correctness conditions become: 

 
1. The caller satisfies the precondition of the nominal target. 
2. The actual target guarantees to satisfy its declared postcondition, provided that 

its precondition was satisfied. 
3. On return, the caller may assume that the postcondition of the nominal target 

holds. 

                                                           
2 A procedure whose purpose is to create and initialise objects of a class is called a 

constructor 



To these we need to add: 
 
4. Satisfaction of the precondition of the nominal target is sufficient to ensure 

satisfaction of the precondition of the actual target. 
5. Satisfaction of the postcondition of the actual target is sufficient to ensure 

satisfaction of the postcondition of the nominal target. 
 
We have added conditions 4 and 5 to link the contract that is actually satisfied 

with the contract that the caller assumes. We now consider how these conditions 
may be guaranteed. 

The simple case is for each actual target to have the same contract as the 
corresponding nominal target. For example, suppose the definition of draw in class 
AttitudeIndicator inherits the contract given at the declaration of draw in its 
ancestor DisplayedElement. Any call whose nominal target is draw in class 
DisplayedElement, and which is correct with respect to the contract declared for 
draw in that class, will be correct if the actual target is draw in AttitudeIndicator. 

However, it is also permissible to define a new contract for draw in class 
AttitudeIndicator, provided that the new contract conforms to the original. The 
conformance required is that the new contract may assume no more than the old, 
and it must promise no less. In other words: 

 
• The overriding method (e.g. draw in AttitudeIndicator) may have a weaker 

precondition than the overridden one (draw in DisplayedElement), but not a 
stronger one (i.e. the original precondition implies the new one); 

• The overriding method may have a stronger postcondition than the overridden 
one, but not a weaker one (i.e. the new postcondition implies the original one). 
 
In summary, an overriding method may weaken the precondition and/or 

strengthen the postcondition of the overridden method. 

5 Informal and Semi-Formal Use of Design-By-
Contract 

Design-By-Contract can be implemented in various ways, ranging from informal 
methods that rely on the developer to ensure correctness, to rigorous ways that are 
amenable to automated analysis. 

5.1 Implementing DBC with Comments  

The contract of a method can be documented in the form of comments. This 
approach may be used with any programming language. For example, a C++ 
declaration of the draw method might appear like this: 



// File DisplayedElement.hpp 
#include "Screen.hpp" 
 
class DisplayedElement { 
public: 
  // Display the element in the given rectangle 
  virtual void draw(Screen &s, Rectangle r)  
  //pre r.height >= minHeight, 
  //    r.width >= minWidth; 
  //post instrument is displayed in the rectangle, 
  //     rest of the display is unchanged; 
    = 0; 
} 

Although contracts expressed as comments are better than nothing, it is difficult 
to ensure that the contracts expressed are complete and are satisfied by both 
parties. Design-by-Contract is much more powerful if contracts can be verified in 
some way. 

5.2 Annotated Development with Run-Time Checks 

A few programming languages and tools support notations for expressing 
contracts. Examples of such notations include Eiffel (Meyer 1992) (in which 
contracts are part of the language itself) and iContract (Kramer 1998) (an extension 
of Java in which specially-formed comments are used to express contracts). 
Typically, the tools for such languages provide the facility for generating run-time 
checks of preconditions, postconditions and class invariants. Nevertheless, it is still 
up to the software developer to ensure that the contracts are completely expressed 
and that the callers of a method do not rely on behaviour that is not expressed in 
the contract. Likewise, the developer must ensure that where preconditions and/or 
postconditions are redefined in an overriding method definition, the new contract 
conforms to the inherited contract. 

Furthermore, even if run-time checks are enabled during testing, there remains 
the possibility that testing has not exercised all possible targets at every point of 
call, or that broken contracts occur in rare cases that have been missed due to 
insufficient coverage. Some contracts (e.g. those involving quantification over all 
possible values of a type) are either impossible or too expensive to check at run-
time. 

5.3 Annotated Development with Extended Static Analysis 

Another way of using contract annotations is to perform extended static analysis 
(often involving term rewriting or theorem proving techniques) in order to attempt 
to prove that the code satisfies the specifications. The most commercially 
successful example of this approach is Spark Ada (Barnes 1997). Its success results 



from starting with a subset of Ada that avoids hard-to-verify elements such as 
pointers. 

When this approach is applied to object-oriented languages such as C++ and 
Java, the following difficulties have to be confronted: 

 
• The widespread use of pointer and reference types makes it impossible in 

practice to perform full static analysis except on small snippets of code because 
of the potential for aliasing. It is not possible to avoid reference types in Java, 
and it is only possible to avoid pointers and references in C++ if polymorphism 
is not used. In order to perform useful analysis of larger sections of code, it is 
necessary to make sweeping assumptions to limit the extent of aliasing. While 
these assumptions may frequently hold, this approach cannot be justified in 
safety-critical work. 

• Traditional programming languages are not designed to be verifiable and have 
features that make verification difficult unless additional information is 
provided. For example, object-oriented languages typically allow a variable or 
parameter of any non-primitive type to have a null value. When contracts are 
added, it becomes necessary to include a great many preconditions, 
postconditions and class invariants stating that certain entities are not null. If the 
developer forgets to add these, the correctness conditions become unprovable.  

• Complex data structures are often used to store data that is conceptually simple. 
For example, a tree structure may be used to store a set of records, and 
additional index structures may be added to enable fast searching on multiple 
keys. To the clients of the class that maintains this data, the internal structure is 
irrelevant and the operations are much better specified in terms of a simpler 
abstract model. Therefore the programming language needs to be supplemented 
not only by a means of expressing contracts but also a means of declaring an 
abstract data model and its relationship to implementation data. 

• Programming languages do not have sufficiently powerful expression syntax to 
express many contracts. In particular, quantification and associated concepts 
from first-order predicate calculus need to be expressible; so the expression sub-
language needs to be extended. This may lead to confusion in the mind of the 
user, because there are different expression sub-languages depending on 
whether the context is specification or code. 

• Integer arithmetic in C++ and Java is subject to wrap-around when the result is 
too large to represent. This is incompatible with the interpretation that is 
generally required in specifications (Chalin 2003). Annotated development 
systems either ignore this problem or provide a context-sensitive interpretation 
of expressions. 
 
The state-of-the-art in object-oriented annotated development is represented by 

tools such as ESC/Java (Flanagan et al 2002) which is based around annotated 
Java. We note that the documentation for ESC/Java states that the system is 
deliberately unsound in some respects – because the price for soundness in the 



context of Java would be a great reduction in the practical usefulness of the tool. 
Nevertheless, these tools represent a substantial achievement and are capable of 
detecting many programming errors. Where there is a requirement to assess the 
correctness of Java code in a safety-related project, we consider that the use of 
such tools would be very worthwhile as they are likely to discover many of the 
coding errors. What they cannot do (except in simple cases) is guarantee to find all 
of the design and coding errors (or prove the absence of any), or prove more 
generally that the program fulfils the requirements. 

A further difficulty (affecting all forms of static analysis) is that the degree to 
which programs containing loops can be verified is severely restricted unless 
precise and complete loop invariants are available (since the program state 
following a loop cannot be computed without one). However, determining loop 
invariants is tedious and often very difficult. In order to achieve the twin goals of 
verifiability and productivity, the number of hand-written loops needs to be 
drastically reduced. 

We also consider that a code-centric notation with optional annotations is far 
from ideal. Developers will be tempted to write the code first and add the 
specification annotations later. This is likely to lead to incomplete specifications 
and hard-to-verify code. Instead, specifications should be compulsory and central 
to the notation; code should be optional and subservient to specifications. 

 

6 Verified Design-By-Contract 
The limitations of informal and semi-formal implementations of Design-by-
Contract are avoided if all contracts are formally verified without making 
assumptions that cannot be justified or sacrificing soundness in other ways. We 
refer to this approach as Verified Design-by-Contract. 

The “Escher” project was conceived with the goal of developing a toolset to 
support Verified DBC with close to 100% automated verification. The system is 
intended for use in applications at all safety integrity levels. We now present an 
outline of the toolset. 

6.1 Principles and Notation 

In pursuit of our goal we adopted the following principles: 
 

• Code should serve only to implement a corresponding specification; 
• The notation should support specifications based on abstract data models with 

refinement to implementation models; 
• The notation should be designed to facilitate automated verification, avoiding 

the problems of notations based on programming languages. 



We also felt that the notation should avoid mathematical symbols that are not 
familiar to ordinary software developers, since many developers are put off by the 
highly mathematical notations of some formal languages. 

These principles were embodied in the Escher Tool, which has been 
commercially released as the product Perfect Developer. The tool is based around 
a notation designed for the expression of functional requirements, specifications 
(of which contracts are a part) and implementation code. 

 Returning to our example, a declaration of the display method in the notation of 
Perfect Developer might look like this: 

 

// File DisplayedElement.pd 
import "Screen.pd"; 
 
class DisplayedElement ^= 
interface 
 
  // Display the element in the given rectangle 
  deferred schema draw(s!: Screen, r: Rectangle)  
    pre r.height >= minHeight, 
        r.width >= minWidth 
    assert isDisplayedOn(s’, r), 
        s’.isSameOutsideRectangle(s, r); 
 
  deferred ghost function 
              isDisplayedOn(s: Screen, r: Rectangle): bool; 
end; 

 
We refer to an inherited postcondition as a postassertion because it is 

necessarily incomplete; hence the ‘postcondition’ part of the contract of display is 
introduced by the keyword assert. 

A ‘ghost’ function isDisplayedOn has been declared in order to properly define 
the first part of postassertion (i.e. that on return, the element is displayed on the 
screen in the specified window). This function will be defined in derived classes 
such that it returns true if the window contains exactly the displayed element (but 
without being concerned with the details of how it is drawn, as such detail belongs 
in the draw method). Since it has been declared ghost, no code will be generated 
for it; its declaration exists solely to facilitate specification and verification. 

The second part of the postassertion expresses the requirement that calling draw 
changes no part of the screen outside the given rectangle. So we are able to specify 
(and verify formally) not only that draw correctly draws the element in the 
rectangle, but also that it does not corrupt any other part of the screen. The method 
isSameOutsideRectangle of class Screen will be another ghost function. 



6.2 Verification Conditions 

In common with most other formal method tools for software development, Perfect 
Developer performs type checking on the input text and generates verification 
conditions (also known as proof obligations). Each verification condition is a 
mathematical statement, and for a correct program, all the verification conditions 
will be true theorems. The tool is designed to ensure that, apart from a small 
number of documented limitations, the converse is also true: that is, if a program’s 
verification conditions are all true theorems, the program correctly implements its 
specification (subject, of course, to the availability of sufficient resources and to 
the correct behaviour of the hardware on which it is run, the compiler and linker 
used to process the generated code, and the tool itself). 

Verification conditions are generated to express 47 separate aspects of 
correctness, including the following: 

 
• Every method precondition is satisfied at each point of call; 
• Every constructor and procedure satisfies its postcondition and postassertions; 
• Every function delivers its declared result value; 
• When one method overrides another and declares a new contract, the new 

contract respects the old; 
• Class invariants are established by all constructors and preserved by all 

methods; 
• Loop invariants are established and preserved; 
• Loops terminate after a finite number of iterations; 
• Assertions embedded within an implementation are satisfied; 
• Behavioural properties specified by the user are satisfied; 
• Explicit type conversions always succeed. 

 
By providing a mechanism to express expected behaviour, we make it possible 

to prove that the program satisfies safety properties and other functional 
requirements.  

When generating the verification conditions for code, the tool computes the 
program state forwards from the start of each method. Initially, the known program 
state comprises the method precondition, the class invariant, and any declared type 
constraints. At any point where a verification condition is required (e.g. a method 
call, an assertion, or the end of the method), it generates the theorem: 

 
current state ==> required condition 

 
where current state is the accumulated program state and required condition is 

the expression that should hold at that point (e.g. the precondition of a called 
method, or the expression asserted, or the postassertion if we are at the end of a 
method body). 



6.3 Proving the Verification Conditions 

In order to maintain high productivity, we use a fully automatic (i.e. non-
interactive) theorem prover to process the verification conditions. We decided on 
an automatic prover because commercial software development organizations 
typically have neither the time nor the skilled staff needed to develop mathematical 
proofs, even with computer assistance. 

The prover uses a combination of conditional term rewriting and a first-order 
theorem prover based on a modified Rasiowa-Sikorski deduction system. This 
combination was chosen because first-order reasoning is easier to automate than 
higher-order reasoning. Although some features of the notation (such as dynamic 
binding) cannot be expressed in first-order logic, the instances where higher-order 
reasoning is needed are infrequent and conform to standard patterns, so they can be 
handled by term rewriting. 

The logic underlying the verification conditions is a logic of partial functions 
(because of the presence of functions with preconditions). However, it is possible 
to use a classical 2-valued logic in most parts of the prover, by ensuring that for 
any term involving partial functions, either the preconditions have been shown to 
hold, or there is another verification condition stating that they do so. 

6.4 Reporting Successful and Failed Proofs 

Automated theorem provers typically generate proofs that are hard for humans to 
follow. Therefore, Perfect Developer transforms successful proofs into a 
hierarchical format designed for human consumption, allowing them to be 
inspected or checked if required. 

Failed proofs typically indicate errors. Our goal is to provide the developer with 
sufficient information to identify the cause of the error. This has proved to be a 
difficult task; nevertheless we have been moderately successful. 

6.5 Developing Code from Specifications 

While it is certainly possible to use Verified Design-by-Contract during the 
specification and design phases only, productivity can be increased by using 
automatic or semi-automatic code generation. Also, we have already mentioned 
that the correct design of loop invariants is a difficult task. This burden on the 
developer can be reduced if most loops can be generated automatically from 
specifications. 

Our toolset therefore supports refinement of specifications to code (still within 
the same notation) not just manually but also (in many cases) automatically. 
Verification conditions are generated to ensure that manual refinements precisely 
conform to the specification. The code is then automatically refined to a slightly 
lower-level notation internally before being translated to a standard programming 
language. 



6.6 Results 

Perfect Developer has been used by our own organization and by others for a 
variety of applications. Metrics relating to three very different applications are 
given in Table 1. The applications illustrated are the Perfect Developer 
compiler/verifier itself, a terminal emulator, and a substantial subsystem of 
government information system that was originally specified using the CREATIV 
toolset (Warren & Oldman 2003). 

 
 Compiler/ 

verifier  
Terminal 
emulator 

Government 
IT system 

Perfect source lines3 114720 3192 13486 
Generated C++ lines4 229367 6752 - 
Verification conditions 13144 1349 2631 
Prover success rate5 � 96% � 98.0% � 99.6% 
Seconds/verification condition6 4.5 2.4 3.8 

 
In both projects where C++ code was generated, the number of lines of 

generated C++ is about twice as great as the number of lines of specification and 
explicit refinement. This is notwithstanding that the Perfect source contains 
comments and some specification elements (e.g. preconditions and behavioural 
properties) that have no counterpart in the C++. We estimate that an equivalent 
handwritten C++ program would contain 1.5 to 2 times the number of lines of 
generated C++, so the developer writes only one-third to one-quarter the amount of 
Perfect text that he/she would in C++, further reducing the opportunity to introduce 
errors. 

The number of loops appearing in the generated C++ outnumbers loops 
(provided by way of explicit refinements) in the source text by a factor of thirteen 
to one. Thus we have succeeded in relieving the developer of much of the chore of 
designing loop invariants. Nevertheless, we feel that further improvement is 
possible in this area, since many of the remaining loops conform to a common 
pattern. 

The lower bound of the prover success rate varies from 96% to 99.6%. In the 
case of the compiler/verifier, the figure is nearly two years old because we have 
not investigated a sufficiently large sample of failed proofs for some time. 

                                                           
3 Including comments and extra line breaks within complex expressions to enhance 

readability 
4 Total of header and code files; no comments; no line breaks within complex expressions 

except at right margin 
5 Percentage of verification conditions that we believe to be provable for which the prover 

produced a proof without the need for additional proof hints 
6 Average per verification condition attempted, including unsuccessful proof attempts 



Significant improvements have been made to the prover since the figure of 96% 
was obtained and we believe that the true figure is nearer 98% now. 

The use of the tool has resulted in the detection of a number of significant bugs. 
For example, in the compiler/verifier, a proof failure highlighted a condition in 
which invalid C++ could have been generated. In the case of the terminal emulator, 
the protocol specification was found to contain an ambiguity, despite having been 
in use for five years. 

7 Other Issues with Object-Oriented Development 
Although the safety of polymorphism with dynamic binding is usually regarded as 
the most serious issue arising from the use of object-oriented technology in safety-
critical systems, a number of other concerns have been raised. We comment briefly 
on some of these here and, where applicable, the solutions we adopted in the 
design of Perfect Developer. 

7.1 Traceability 

Standards such as RTCA DO-178B include the recommendation (depending on 
criticality level) to trace all code to requirements. In the absence of dynamic 
binding, this is relatively straightforward to achieve. Each procedure at the 
outermost layer of the software is typically present to support directly a stated 
functional requirement. Static analysis of the program can identify all lower-level 
procedures that are directly or indirectly called from the outermost procedures. 
Thus a lattice can be generated in which every procedure is directly or indirectly 
linked to one or more functional requirements. 

Problems arise if a particular branch of a conditional (e.g. if- or switch- 
statement) is never executed because its condition can never be satisfied. Such 
situations can be hard to identify unless formal analysis is used. The associated 
code will appear to be linked to a requirement but is in reality dead or deactivated. 

Dynamic binding complicates the situation because when dynamic binding is 
present, it is generally not possible to determine statically what method is called. 
However, we can take an alternative approach, based on treating method 
postconditions as low-level requirements. In our example: 

• We define a low level requirement: “Every displayable element can be 
displayed in a rectangle within the screen by calling its draw method”. 

• For every class in the DisplayedElement hierarchy, the draw method is 
implemented so as to satisfy this requirement. The details of the implementation 
will vary from one instrument class to another. 

• At various points in the application, in support of higher-level requirements, a 
flight instrument will need to be displayed in a rectangle. The programmer 
inserts a call to draw at each such point, knowing that the need coincides with 
the low-level requirement that draw satisfies. 



Thus we trace the high-level requirements of the application to the low-level 
requirements associated with called methods such as draw (possibly going through 
some statically-bound method calls on the way). Separately, for each class derived 
from DisplayedElement, we trace the implementation of draw to the low-level 
requirements defined for that method. If each low-level requirement can be traced 
to some high-level requirement in this way, and every piece of code can be traced 
to some high-level or low-level requirement, we have achieved traceability even in 
the presence of dynamic binding. 

Problems arise if a method is never called for some class(es); for example, we 
might define a type of DisplayedElement that is never displayed. Again, this 
situation can only be found in the general case by formal analysis. 

We note than when formal verification is performed, the proofs that 
requirements are met contain all the information needed to trace the requirements 
to the code that implements them. It is our intention to extend Perfect Developer to 
generate a trace lattice automatically from the proofs. 

 

7.2 Worst Case Execution Timing 

In real-time systems it is required that certain program segments complete within 
defined deadlines. Where the program includes method calls that are subject to 
dynamic dispatch, the execution time will depend on the methods actually called 
and it is therefore difficult to determine statically. 

A solution is to divide up the maximum allowable execution time of a program 
segment into a budget for each individual method call and a remainder for other 
statements. This can be done in such a way that the total execution time (taking 
account of any loops involved) will meet the deadline, as long as no individual 
method call exceeds its budgeted time. 

To ensure by design that each method call completes within its budget, we can 
include the time budget in the contract of the nominal target. The method’s side of 
the contract now reads: 

 
• Provided my precondition P is satisfied on entry, I promise to return within time 

T in a state satisfying my postcondition R. 
 
When one method declaration overrides another, the time budget of the 

overridden declaration is inherited by the overriding declaration by default, just 
like the precondition and postcondition. 

We saw previously that when one method overrides another, instead of 
inheriting the contract as-is, it may improve on it (i.e. require less and/or deliver 
more). Provided we are only interested in maximum execution times (and not also 
in minimum execution times), the contract of an overriding method might improve 
on the overridden contract by promising to complete in a shorter time. 



7.3 Dynamic Memory Allocation 

Dynamic memory allocation is generally avoided in safety-critical software. This 
policy is typically justified on the grounds that memory allocation operations may 
fail due to insufficient memory or excessive fragmentation, and that the time taken 
to perform them will vary depending on the history of calls to allocate and release 
memory. 

Object-oriented programming languages typically rely on dynamic memory 
allocation to allocate all objects of non-primitive types. Therefore, if safety-critical 
systems are constructed using object technology, it is necessary to establish 
policies for the safe use of dynamic memory allocation. We suggest here two such 
policies. 

The first policy is to use dynamic memory allocation during the initialisation 
phase only. In our flight instrument example, we would expect that the set of all 
elements that might need to be displayed is known at the start. We can therefore 
create them all during initialisation, even if not all of them need to be displayed 
immediately. Other objects (such as values of type Rectangle in our example) can 
be implemented as value types, avoiding the need for dynamic memory allocation 
when creating them. 

This policy is comparable to allocating all data statically when a procedural 
approach is used. It is likely to be adequate for many safety-critical systems. 
However, it would not suit a system that handles a varying number of objects, such 
as an air-traffic control system handing a varying number of aircraft. 

Our second policy covers this situation by maintaining a free-list for each class 
that has a varying number of instances. In order to run in bounded memory, there 
must be a known upper bound on the number of instances of each class. We can 
initialise each free-list with the corresponding number of instances. Provided the 
upper bounds are respected (which will be typically be enforced by class 
invariants), there will never be a need for dynamic memory allocation other than 
from the free-lists. Allocating from a free-list in bounded time can be easily 
implemented. The free-list mechanism can be provided either by the supplier of the 
compiler and associated libraries (as we do with Perfect Developer), or (in some 
languages) by declaring a custom allocator for the classes concerned. 

This policy is, in essence, similar to declaring a static array of objects tagged by 
‘in use’ flags, allocating and releasing slots in the array as objects are created and 
destroyed. 

If we have control over the standard memory allocator, we can choose not to 
populate the free list in advance. When allocating an object, if the corresponding 
free list is empty then we use the standard memory allocation mechanism instead. 
Provided that no memory has ever been released via the standard mechanism, 
allocation will not involve searching multiple free blocks and can therefore be 
performed quickly. We still need an upper bound on the number of objects of each 
type so that we can compute the maximum amount of memory needed and ensure 
that this amount is available. 



7.4 Overloading 

Object-oriented languages typically provide a mechanism for declaring multiple 
methods with the same name, distinguished only by the numbers and/or types of 
parameters. This mechanism is known as overloading. The compiler decides which 
declaration is the intended target of a method call by choosing the one whose 
formal parameter list best matches the actual parameters, according to some set of 
criteria. 

Overloading can be very useful and, by itself, is not dangerous. The symbol “+” 
has long been used to stand not only for the addition of integers but also for the 
addition of real numbers. Similarly, it is quite natural to use the call 
“print(expression)” where we are happy to accept the default printing format, and 
“print(expression, format)” where we wish to be more specific. 

However, we consider that the combination of overloading with automatic type 
conversion is dangerous because it brings the possibility that more than one 
method declaration may match a particular call. The choice made by the compiler 
may not correspond to the intention of the user, who may not have realized that the 
ambiguity existed. The situation is even worse if the language also allows trailing 
parameters to be omitted in actual parameter lists by providing default values, as in 
C++. 

The solution we adopted is not to perform implicit type conversions (these are, 
in any case, undesirable in languages used for safety-critical software 
development). We make one exception to this rule to allow the type of a value to 
be automatically converted to a supertype (otherwise the notation becomes very 
clumsy to use). This exception raises the possibility of ambiguity, so we explicitly 
forbid any instance of overloading for which it is possible to construct an 
ambiguous call. We have not found this restriction to be onerous in practice; 
indeed, we find that the corresponding error message is only triggered where a 
mistake has been made, or the same name has been used for two unrelated 
operations. 

 

7.5 Template Instantiation 

Templates (known as generics in Ada) are a feature of many object-oriented 
languages. They have been found to be very useful in developing re-usable 
components, especially for representing collections of objects. 

However, it is possible for template declarations to make assumptions about the 
types with which they are instantiated. This carries the risk that a template may be 
instantiated with types that violates these assumptions. 

One way of avoiding this danger is to perform formal verification of each 
template separately for each type with which it is instantiated. Although simple in 
concept, this has the drawback that the verification process is substantially 
lengthened if there are many different instantiations. 



The solution we adopted is to make the assumptions explicit by providing 
syntax for instantiation preconditions in the specification notation. We create a 
contract between a template declaration and the code that instantiates it, similar to 
the contract between a method and its callers. The template declaration is formally 
verified just once and the instantiation preconditions are assumed to hold during 
this process. 

 

7.6 Reference Semantics and Aliasing 

In most object-oriented languages, objects are assigned and copied by reference: 
that is, a pointer to the object is copied rather than the object itself. Some 
languages (e.g. C++) also support assignment and parameter passing by value, 
although polymorphism is typically not available then. 

It is well known that the presence (or even the mere possibility) of multiple 
pointers or references to a common object causes substantial problems for static 
analysis and formal verification. The provision of reference semantics by default is 
also a source of program errors, such as the use of a normal assignment or equality 
operation where cloning or deep equality is needed to achieve the desired result. A 
classic example is where a class is declared to represent a text string. It is natural 
for strings to have value semantics; yet in Java and some other languages, the 
String class has reference semantics. The best that the designers of Java were able 
to do to ameliorate this situation was to provide two classes: an immutable String 
class (for which reference semantics are safe since no modification of the object is 
possible) and a mutable StringBuffer class. 

In our example, reference semantics are unlikely to be a problem for objects of 
classes derived from DisplayedElement since we are unlikely to store references to 
them other than at a single place in class Display. However, if objects of class 
Rectangle have reference semantics, this may well be troublesome because we are 
likely to refer to values of type Rectangle in many different places. 

The solution we adopted is to specify that in our notation, objects of all classes 
and types shall obey value semantics. Where aliasing is required, variables of 
reference type may be declared. We have found that in practice, reference variables 
are rarely needed. 

 

7.7 Inlining 

The C++ language supports the inline keyword and provides default inlining of 
methods whose definitions are included within their declarations. 

Inlining makes it more difficult to verify that the object code conforms to the 
source code. However, should this prove to be a problem, most compilers allow 
inlining to be disabled. 



7.8 Suitability of Mainstream Object-Oriented Programming 
Languages 

Safety-critical developers rightly complain about the unsuitability of mainstream 
object-oriented programming languages for critical systems. The most widely used 
object-oriented programming language is C++, which inherits nearly all the 
problems of C and adds a few new ones such as ambiguous method calls. 

We agree that use of handwritten C++ code carries risk in safety-critical 
systems. However, we observe that C is widely used in critical systems, usually in 
the form of a subset such as MISRA, conformance with which can mostly be 
checked statically. We consider that MISRA C could be readily extended to 
include a subset of C++. Ambiguous method calls could be banned, while 
constructs such as pointer-to-member and the more esoteric features of templates 
could be excluded. Although the use of such a subset is not an ideal solution, we 
believe that it could be safer to use than plain MISRA C due to the increased 
encapsulation available in C++ and the availability of better alternatives to 
troublesome features of C. 

Although it inherits much of the syntactic idiosyncrasy of C++, Java is a 
somewhat safer language. Unfortunately, its lack of support for user-defined types 
with value semantics increases the need for dynamic memory allocation. The 
Microsoft language C# is in many ways similar to Java but supports value types. 
The provision of a garbage collector in both languages is a boon to commercial 
software developers but is likely to be unacceptable in real-time systems. This may 
be less of a problem in future as generational and concurrent garbage collectors 
(Jones & Lins 1996) become mainstream. We note that a real-time subset of Java 
has been defined (RTJ 2003). 

The Ada 95 language extends the Ada 83 standard by providing support for 
(among other things) polymorphism and dynamic binding. However, we do not 
regard Ada 95 as a satisfactory language for object-oriented development. Unlike 
other languages, it does not syntactically distinguish the parameter on which 
dynamic binding depends from other parameters, which we consider likely to cause 
confusion. The notorious “with-ing” problem makes it impossible to construct 
complex object-oriented systems unless an ugly workaround is used. We 
understand that both issues are to be addressed in the next revision of Ada. 

The ideal solution is to use a language that does not have its roots in C and is 
designed with correctness and type-safety in mind. The Eiffel programming 
language is certainly much better designed than the mainstream object-oriented 
languages but has not been widely adopted. 

Many of these concerns are of little or no importance when complete code is 
generated automatically from specifications expressed in a rigorous notation. The 
primary requirement is to ensure that the compiler implements the semantics 
assumed by the code generator. This can be achieved by generating code in a 
language subset carefully chosen to avoid areas of undefined behaviour and 
complex constructs that might be troublesome for the compiler. We adopted this 



approach in the code generators of Perfect Developer. We note that when the tool 
is configured to generate code in C++, the generated code conforms to nearly all 
the MISRA C rules, even though we were unaware of MISRA when the code 
generators were specified. This suggests that we and the authors of MISRA C had 
similar ideas on which features of C should be avoided. 

7.9 Unified Modeling Language (UML) 

UML is the most widely used graphical notation for object-oriented analysis and 
design and is supported by a wide range of tools. Most tools can generate code 
skeletons from UML diagrams; some go further and claim to generate complete 
code if enough information is provided. 

Despite the widespread marketing of UML tools, it appears that many object-
oriented developers - perhaps the majority - manage without them. However, the 
use of UML may increase as more universities include UML in their computer 
science courses, and as open-source UML tools mature. 

Concerns about UML among safety-critical software developers centre on the 
lack of a precise semantic definition for the language. 

We consider that UML is a useful notation for displaying graphically the 
structure of a system and the relationships between the system, its components and 
its users. However, UML is not a substitute for a precise formal specification. 
Although UML has a formal sub-language called Object Constraint Language 
(OCL), it is rarely used, poorly supported by commercial tools and much less 
expressive than Perfect Developer notation. 

Our toolset therefore allows UML models to be imported and will generate the 
corresponding skeletons; but the user must add the detailed requirements and 
specifications. A future version may allow the Perfect specifications and 
refinements to be embedded in the UML model itself. 

 

8 Conclusions 
Object technology undoubtedly facilitates re-use to a greater extent than previous 
programming paradigms. This is clear from the widespread existence and use of 
application frameworks and large component libraries. It is likely that without 
object technology, it would not have been economic to develop many of today’s 
complex and powerful commercial applications. 

Safety-critical software developers are right to be cautious in adopting new 
technology; but rather than dismissing object technology because it is not 
amenable to yesterday’s verification techniques, the safety-critical community 
should seek new techniques to facilitate safe use of the new technology. The most 
important new issue arising from object technology is polymorphism with dynamic 
binding, which is tamed by the Design-by-Contract principle. The use of modern 



formal methods technology to implement Verified Design-by-Contract provides a 
basis for safely harnessing the power of object technology in critical systems. 
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