
A High Productivity Tool for Formally Veri�ed Software
Development

David Crocker and Judith Carlton

Escher Technologies Limited, Mallard House, Hillside Road, Ash Vale, Aldershot GU12 5BJ, United Kingdom.
e-mail: dcrocker@eschertech.com, jcarlton@eschertech.com

Revised version: 20 September 2004

Abstract. It is our view that reliability cannot be guar-
anteed in large, complex software systems unless for-
mal methods are used. The challenge is to bring formal
techniques up to date with modern object-oriented ap-
proaches to software design and to make their use as
productive as informal methods. We believe that such a
challenge can be met and we have developed the Escher
Tool to demonstrate this. This paper describes some of
the issues involved in marrying formal methods with an
object-oriented approach, design decisions we took in de-
veloping a language for object-oriented speci�cation and
re�nement, and our results in applying the tool to small
and large projects.

1 Introduction

The availability of ever more powerful processors has
encouraged organizations to attempt the construction of
large, complex software systems. The larger the software
system, the less e�ective testing is as a means of ensur-
ing the absence of faults. Formal methods have for many
years o�ered a logical solution to the problem of soft-
ware reliability but have generally come at a high cost,
demanding developers with considerable mathematical
skill and costing many additional hours of developer time
to assist with proving veri�cation conditions.

A further barrier to the widespread adoption of for-
mal methods stems from the fact that industry has largely
moved to object-oriented (O-O) software technology. Al-
though object-oriented extensions of Z and VDM have
been described [1,2], neither has been embraced by in-
dustry to the same extent as more established formal
methods such as Z [3], VDM [4], the B-method [5], or
SPARK Ada [6]. Furthermore, we doubt the wisdom of
extending non-O-O languages to include O-O constructs.

The O-O paradigm is very di�erent from previous ap-
proaches. Although O-O languages need much of the
same small-scale structure as their procedural counter-
parts (for example, a rich expression syntax), the higher-
level structuring mechanisms are quite di�erent. Adding
O-O features to older languages leads to the kind of
anomalies visible in the C++ language and in parts of
Ada 95.

Our goal in developing the Escher Tool (now released
commercially as Perfect Developer) was to combine for-
mal methods with modern object-oriented and component-
based approaches to software development, while at the
same time achieving developer productivity no worse
than standard informal techniques. We chose to base
the system on speci�cation and re�nement for two rea-
sons: �rstly because of the considerable di�culties in for-
mally analysing programs hand-written in conventional
programming languages, and secondly because of the
promise of increased productivity provided by automat-
ing much of the re�nement and all of the code generation.

2 Formal methods and object technology: a

marriage made in heaven?

Opinions di�er as to the essential features of object-
oriented notations, but elements often cited include ab-
straction and encapsulation, inheritance, polymorphism
with dynamic binding, object identity, and parametric
polymorphism1. We will consider the implications that
each of these has for formal analysis.

1 This is not meant to imply that these features are speci�c
to object-oriented languages; some of them are present in other
languages too.

2 David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development

2.1 Abstraction and Encapsulation

Abstraction and encapsulation are very helpful to the
formalist, because to a large extent they permit for-
mal veri�cation to be done component-by-component.
Simultaneous formal analysis of both the system and
all its components need only be carried out to verify a
few properties (e.g. absence of unbounded indirect recur-
sion). Furthermore, abstraction and encapsulation per-
mit re�nement of a component's abstract data into e�-
cient implementation data structures, without a�ecting
the behaviour of the component apart from the resources
it uses.

2.2 Inheritance

On its own, inheritance is easily handled formally by
copying the inherited elements from the de�nition of the
parent class into the de�nition of the derived class. It is
when inheritance is used to support polymorphism that
complications arise.

2.3 Polymorphism with dynamic binding

Most object-oriented languages provide polymorphism
by default; that is, wherever a variable, formal parameter
or return value of type T is declared, a value of any
type derived from T may be provided instead, under
the assumption that such a derived type is a behavioural
subtype of T.

We take issue with the safety of this approach where
reliability is paramount because it requires the class hier-
archy to be constructed extremely carefully. Otherwise,
a method that expects its parameters to be of partic-
ular types may not behave correctly when it is given
parameters of alternative types that were not envisaged
(and may not even have existed) when the method was
written. If the declared parameter type is a deferred2

class, the method author might reasonably be expected
to cater for as yet unknown conforming types; but what
if the type is a concrete class, which is only later used as
a base for other classes? A developer who extends a class
and another developer who uses the same class may have
di�erent views on what are the essential behaviours, so
behavioural subtyping is at least partly in the eye of the
beholder.

Although formal speci�cation and veri�cation can
generally be used to ensure correctness in these cases (as
will be discussed shortly), speci�cation in the presence of
polymorphism is more complex than speci�cation when
types are known exactly. It seems unreasonable to force
developers to spend additional e�ort in order to cater for

2 A deferred class is a class that cannot be instantiated, but
serves only as a base from which to derive other classes. Also called
an abstract base class in some languages.

what may only be a distant possibility of derived classes
being substituted in the future.

One solution to this issue is to enforce the practice of
declaring all non-leaf classes in a class hierarchy as de-
ferred (i.e. non-instantiable) classes, so that a variable is
explicitly either of a single �xed type or belongs to a hi-
erarchy. However, our approach is instead to distinguish
between exact types and unions. In Perfect Developer
notation, the type from T is de�ned as the union of
all non-deferred types in the set of T and its direct and
indirect descendants; whereas T alone means precisely
the type speci�ed in T 's class declaration. We note that
Ada 95 takes a similar approach, distinguishing between
T and T 'class.

Where the user does choose to allow polymorphism
(by declaring a variable or parameter of type from T
for some type T), safe use of dynamic binding requires
that an object of a derived class may be substituted for
an object of its parent class. The conditions necessary
to achieve this have been explored by Liskov and Wing
[7], popularised by Meyer in the Design-by-Contract ap-
proach [8] and are discussed further in [9].

The essence of Design-by-Contract is that when a de-
rived class method overrides an inherited method, the
precondition of the overriding method must be satis-
�ed whenever the precondition of the overridden method
would be; that is, the overriding methods may weaken
the precondition but not strengthen it. Similarly, the
postcondition of an overriding method may strengthen
the postcondition of the inherited method. This approach
works well provided that postconditions are not expected
to describe the total state change, which is the case when
postconditions are used to annotate program code (for
example, in the Ei�el language and in annotated exten-
sions of Java). In particular, the postconditions do not
generally include a frame; that is, they place no restric-
tions on which variables can be changed (except where
the initial and �nal value of a variable are expressly
equated in the postcondition). Such postconditions are
insu�cient in a system that is required to generate com-
plete code from speci�cations.

Our solution is to use a two-part postcondition when
declaring class methods. The main part (which we re-
fer to as the postcondition) describes the complete state
change required including the frame. It is not inherited
by an overriding method declaration, although it can be
referred to in such a declaration using the usual super
notation. It is this part that is re�ned to code. The sec-
ond part (which we call a postassertion) is a predicate
that is required to be a logical consequence of the �rst
part and is subject to the usual design-by-contract rules.
The postassertion does not include a frame, because the
set of attributes available to be modi�ed in a derived
class is typically greater than the corresponding set in
the base class, since the derived class may declare addi-
tional attributes.

David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development 3

In consequence, where a method call is statically bound
to a method, both the postcondition and the postasser-
tion can be assumed by the caller when the call returns.
However, where the binding is dynamic, the caller may
only assume that the postassertion has been satis�ed.

It is important to realize that where a method is in-
herited by a derived class without being overridden, then
even if all its veri�cation conditions were satis�ed in the
context of the class in which it was originally declared,
the same may not be true in the derived class. This is
because the method may directly or indirectly make a
call that is dynamically bound, leading to di�erent be-
haviour. In general, a method must be veri�ed in every
non-deferred class in which it is declared or into which it
is inherited3. An exception can be made if the method is
declared as having no dependence on dynamic binding
(which property must of course be veri�ed). We use the
keyword early to denote such a method, because such
methods are useful in other contexts (for example, they
can safely be called in contexts where dynamic binding
is undesirable, such as within constructors of deferred
classes, or within class invariant declarations).

2.4 Object identity

Most object-oriented programming languages implement
reference semantics for variables and parameters of all
types other than primitive types such as integers and
characters. This means that a variable or parameter of
non-primitive type holds a pointer or reference to an ob-
ject stored in a heap area of memory, rather than holding
the value directly4. The use of reference semantics gives
rise to the notion of object identity.

The use of reference semantics is a source of serious
problems, due to aliasing between objects. From a formal
perspective, the possibility of aliasing makes it hard to
reason about components that deal with several objects
of similar type and modify one or more of those objects,
unless it can be guaranteed that all the objects are dis-
tinct. For the developer, the need to choose whether to
use shallow equality vs. deep equality - or assignment
vs. cloning - is a rich source of errors. We have observed
that there are many situations in which object identity
is both unnatural and undesirable. The classic example
is a String class, which is invariably implemented as a
library class obeying reference semantics, even though
this is highly unnatural to the user5.

3 Provided that all derived classes are re-veri�ed when a new
version of a base class is introduced into a project, this also catches
errors that occur when a base class is changed in such a way that
assumptions made by the developer of a derived class no longer
hold. This scenario is one of a number of fragile base class prob-
lems.
4 The C++ language does allow the user the choice of refer-

ence or value semantics, but dynamic binding can only be used in
conjunction with reference semantics.
5 Some languages attempt to mitigate the e�ects of reference

semantics on strings by providing both mutable and immutable

Perfect Developer implements value semantics by de-
fault, avoiding the problems of aliasing. Reference se-
mantics are available on demand where the developer
has a genuine need for object identity.

A further advantage of using value semantics by de-
fault is that there is no need for the arti�cial distinction
between primitive types and class types that is present
in traditional object-oriented programming languages,
so that types such as int and bool behave like (and are
de�ned as) �nal6 classes.

The use of value semantics does impose an additional
execution-time overhead due to the need to copy objects
(or, more typically, parts of objects) at times. Copying
can largely be avoided by using shared objects in the
generated code and a copy-on-write mechanism; conse-
quently we have not found the overhead to be a seri-
ous problem in commercial applications. Where speed is
critical, the user has the option of specifying reference
semantics for selected objects.

2.5 Parametric polymorphism

The provision of parametric polymorphism (also called
generics or templates) in an object-oriented program-
ming language facilitates the development of reusable
classes (especially collection classes). However, the de-
signer of a templated class may need to assume that the
classes with which its parameters are instantiated obey
certain properties (for example, that they declare a `<'
operator that de�nes a total ordering between objects
of the class). Unless the language provides an adequate
mechanism for expressing these assumptions, there is a
risk that the template will be instantiated with unsuit-
able parameters.

One way to avoid this problem is not to attempt ver-
i�cation of the template declaration itself but instead to
verify each of its instantiations. However, this replicates
the veri�cation e�ort needed and prevents the develop-
ment of pre-veri�ed generic components.

Our solution is to declare instantiation preconditions
for templates instead. The designer of a generic class may
specify that the classes with which its parameters are in-
stantiated must be derived from some parent class (sim-
ilar to the �constrained genericity� facility provided by
some programming languages), and/or that those classes
must have speci�c methods that conform to particu-
lar precondition/postassertion semantics. This allows a
template declaration to be veri�ed independently of its
instantiation context. At each point of template instan-
tiation, it is only necessary to verify that the correspond-
ing instantiation preconditions hold.

string classes (e.g. StringBu�er and String in Java). The use of
reference semantics poses no problem for users of the immutable
version, but the problem remains when the mutable version is used.
6 A �nal class is a class from which no further classes may be

derived; that is, it cannot be inherited by another class declaration.

4 David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development

3 Building safety and veri�ability into an

object-oriented language

From the preceding section, it is evident that traditional
object-oriented programming languages are not well suited
to complete formal veri�cation (notwithstanding the con-
siderable achievements of advanced static analysers such
as ESC/Java [10]). Furthermore, our goal was to combine
formal speci�cation and re�nement to programming-like
constructs in a single language, in order to avoid any
need to switch between di�erent syntax, semantics or un-
derlying logics when moving from speci�cation to imple-
mentation. We therefore created the notation described
in [11].

The most commonly used object-oriented languages
are full of traps for the unwary - many of which are
the result of e�orts to maintain compatibility with older
languages. We were determined to produce a notation
that was both powerful and suitable for safety-critical
applications, resulting in the following design decisions.

3.1 No side e�ects in expressions

Functions, operators and other expression constructs have
no side e�ects. This not only makes evaluation order im-
material, it simpli�es formal analysis.

3.2 Overloading of operators and other methods

Overloading allows the user to declare multiple methods
or operators with the same name but di�ering in the
number and/or types of parameters taken (just as the `+'
symbol is generally used to stand for both integer and
�oating-point addition, and the `−' symbol represents
both negation and di�erence).

Used sensibly, overloading is a powerful tool; but it
interacts disastrously with other features of some pro-
gramming languages - in particular automatic type con-
version and default parameters - resulting in ambiguous
method calls.

The notation of Perfect Developer provides neither
default parameters nor automatic type conversions, save
for the widening of one type to a union that includes that
type. Furthermore, we forbid the declaration of any set
of identically named methods for which it is possible to
construct a parameter list that matches more than one of
them. In consequence, the issue of resolving ambiguous
bindings does not arise.

3.3 Casts

Casting constructs are essential in a system using class
hierarchies. In addition to type comparison operators,
we provide two type-casting operators. The `as' oper-
ator widens a type to a union that includes the origi-
nal type (for example, converting a value of type De-
rived to type from Base, where class Derived inherits

class Base). The `is' casting operator provides the con-
verse type-narrowing conversion (for example, convert-
ing a value of type from Base to Derived). It asserts that
the actual type of the expression concerned conforms to
the narrower type at run-time; naturally, a veri�cation
condition is generated every time it is used.

3.4 United types

We have already described our de�nition of the construct
�from T � in terms of a union of classes. We also provide
a type union operator, allowing variables of united types
to be declared. Values of united types are extracted using
an `is' cast.

In practice, in most situations where unions might
be used, it is better to declare a class hierarchy and use
polymorphism instead; so the main use of the type union
operator is to unite void (a class which has the single
value null) with another type. This form of type union
is particularly convenient when declaring recursive data
structures. For example, a class Branch used for building
trees might have members left and right whose type is
the union of Branch with void. We might instead have
allowed any variable x which is declared as having some
class type T to be given the value null, just as Java and
most other languages using reference semantics allow any
variable of a non-primitive type to be assigned a null
reference. However, if x is permitted to take the value
null, then the action of calling a member method of T
on x or accessing a member variable of x introduces a
veri�cation condition that x is not null at that point. For
veri�cation to succeed, this typically requires x 6= null to
be stated as an additional precondition, class invariant
or postassertion. It is far better to require the developer
to specify explicitly where null values are allowed.

3.5 Method overriding

In most object-oriented languages, a method declaration
that overrides an inherited method is not syntactically
distinguished from a virgin method declaration. This cre-
ates the possibility of a user accidentally overriding an
inherited method of which he is not aware, usually with
serious consequences7.

Perfect Developer therefore requires every overriding
method declaration to be introduced with the keyword
de�ne if it is overriding the declaration of a deferred
method, or rede�ne if it is overriding a non-deferred
method, thereby preventing accidental overriding. We
note that the C# language likewise provides an over-

ride keyword.

7 Even if the developer of the derived class is aware of all the
methods of the base class, a developer may later add a method to
the base class that clashes with a method in some derived class.
This is another fragile base class problem.

David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development 5

4 Syntax issues

Most formal notations rely heavily on notation borrowed
from mathematics. For example, conjunction and dis-
junction are usually represented by the symbols ∧ and
∨.

We consider that the use of such symbols in a nota-
tion targeted at software engineers is a mistake. Many
software developers have only a basic grounding in math-
ematics and are not familiar with these symbols. The
characters are not available on standard keyboards and
are not easy to �nd in the most popular word processing
programs.

For the sake of ease of learning and developer pro-
ductivity, we felt it preferable to borrow from program-
ming language syntax instead - for example, by using the
symbols & and | instead of ∧ and ∨. Likewise, we use
keywords rather than symbols to represent quanti�ers
and to provide the syntactic skeletons for new forms of
expression such as set comprehension.

It was tempting to go further and borrow the syn-
tax of constructs wholesale from a popular programming
language, much as the designers of Java borrowed most
of the syntax from C++. However, it would have been
di�cult to do so without importing some of the well-
known safety problems present in these languages; so we
contented ourselves with using snippets of syntax from a
number of di�erent programming and speci�cation lan-
guages.

The presentation of quanti�ed expressions deserves
special mention. We �nd that the most common use
of quanti�ed expressions in software speci�cations is to
state that all elements of a particular collection have
some property, or that at least one element of some par-
ticular collection has a property. Furthermore, some soft-
ware developers �nd the concept of quanti�cation over
all elements of a collection easier to grasp than quanti�-
cation over an in�nite type. We therefore provide quan-
ti�cation over both types and over the elements of collec-
tions. When teaching new students, we introduce quan-
ti�cation over collections early in the course; quanti�ca-
tion over types comes much later.

5 Improving the Productivity of Formal

Methods

Barriers to the widespread adoption of formal methods
include the low productivity they are perceived to of-
fer and the mathematical skills they demand of their
users. Software development organizations are reluctant
to bear these costs - even (in many cases) when devel-
oping critical systems.

We believe that formal methods have the potential
to provide greater productivity than traditional software
development processes. In this section we discuss how we

have attempted to improve the productivity of formally
veri�ed software development.

5.1 Automated veri�cation

Perfect Developer generates 50 di�erent kinds of ver-
i�cation condition [12] in order to express a range of
correctness properties including the following:

� The requirements are well-formed;
� The speci�cation is well-formed;
� The speci�cation behaves in accordance with the re-
quirements;

� The design-by-contract rules for behavioural subtyp-
ing are obeyed;

� Type constraints are honoured;
� Variables are initialised before use;
� Each class invariant is established by each construc-
tor of the class and is preserved by each member
schema;

� Assertions and postassertions are satis�ed;
� User-de�ned operators have the appropriate associa-
tivity, commutativity, symmetry and transitivity prop-
erties where the context so requires;

� Manual re�nements are well-formed and are true re-
�nements of the corresponding speci�cations;

� Loops are terminating;
� Directly recursive de�nitions are terminating (a thor-
ough treatment of indirect recursion is not yet imple-
mented).

By �well-formed� we mean that all expressions can be
evaluated without violating preconditions. This encom-
passes not only operator preconditions (e.g. �array index
within bounds� and �no division by zero�) but also cov-
ers the correctness of other constructs (e.g. a narrowing
type cast has a precondition that the dynamic type of
the expression is a subtype of the type to which it is
cast).

In order to ensure correctness, the veri�cation condi-
tions must be shown to be true theorems. Perfect Devel-
oper includes a theorem prover for this purpose. Com-
mercial software developers rarely have the skills needed
to assist a theorem prover in developing proofs, and
those that do have the skills cannot a�ord the time; so
we chose to provide a non-interactive prover rather than
an interactive one.

A combination of recent advances in automated rea-
soning technology, increasing processor power and care-
ful language design has allowed us to approach our target
of 100% automated proofs. The prover uses a combina-
tion of term rewriting and a superposition-based �rst-
order theorem prover; the latest version uses backtrack-
free splitting [13] to improve performance. Although the
underlying logic of the notation is a many-sorted logic
of partial functions, we are able to use conventional two-
valued logic in most of the prover, because any veri�-
cation condition that relies on partial functions is ac-

6 David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development

companied by another condition that ensures that the
associated preconditions are satis�ed.

5.2 Avoiding loops

Loops pose a particular problem for formal software ver-
i�cation, because neither a loop nor the code that follows
it can be veri�ed without knowledge of an adequate loop
invariant. Although there has been some research on au-
tomated determination of loop invariants [14], it is at
present impossible to avoid the need for users to declare
loop invariants in more complex cases. The manual con-
struction of correct loop invariants is di�cult and time-
consuming in all but the simplest cases.

Speci�cations in Perfect Developer are state-based
and so do not contain loops; but loop statements can
be introduced explicitly by the user within method re-
�nements. The notation requires the user to declare a
loop invariant. Fortunately, the provision of automated
re�nement by the tool and the presence in the notation
of elements such as quanti�ers and comprehension oper-
ators means that it is rarely necessary to write explicit
loops. In practice, we �nd that of all the loops in the
generated code, only about 7% correspond to loops ex-
plicitly introduced by the developer.

5.3 Automated re�nement

Perfect Developer o�ers automated re�nement, so that
the code for many components can be generated directly
from their state-based speci�cations. Manual re�nement
(with automated veri�cation) is needed only where the
automatic re�nement fails to deliver an implementation
that is e�cient enough, or where the speci�cation is writ-
ten in an implicit style and Perfect Developer is unable
to re�ne it to a more explicit form.

Automated re�nement is currently implemented us-
ing a �xed set of rules together with a library of commonly-
used classes and methods. In the future we intend to try
a more intelligent approach that uses feedback from the
veri�er, similar to the proof planning mechanisms used
in some theorem provers [15].

The tool generates code in two stages. First, the re-
sult of manual or automatic re�nement is further re-
�ned to an internal notation. This notation is based
on the standard Perfect Developer implementation no-
tation, but removes constructs that are not readily trans-
latable (e.g. quanti�ers) while adding low-level constructs
such as assignments. The precise subset of this notation
that is used depends on the output language and com-
piler selected, re�ecting the fact that some languages of-
fer more facilities than others and some compilers have
been found to generate incorrect object code for some
constructions. We do not generate veri�cation condi-
tions for this re�nement step, although it would be easy
enough to do if this were required for a high-integrity
application.

The output from this last re�nement is translated
into code. We rely on using simple rules for code gen-
eration rather than attempting to verify that the code
is correct. Indeed, veri�cation of the generated code is
somewhat pointless in the absence of veri�ed compilers,
particularly as we have been informed by our contacts in
safety-critical software development organisations that
even �certi�ed� compilers quite often exhibit code gen-
eration faults. We have given some thought to verify-
ing the object code produced by the compiler directly
against the �nal re�nement.

6 An Example: Binary Search

Listing 1 illustrates the speci�cation of a function to
search an ordered table and its re�nement to a classic
binary search algorithm, in the notation of Perfect De-
veloper. The require clause constrains the types with
which the generic parameter X can be instantiated to
those types having a total ordering operator `∼∼' (from
which Perfect Developer automatically de�nes other com-
parison operators including `<' and `<='). The precon-
dition (introduced by the pre keyword) states that table
must be in nondecreasing order, using member function
isndec of class seq of X to express this. The required
function result is speci�ed implicitly using the satisfy
clause. The unary `#' operator denotes the length of its
operand while the construct �forall x ::collection :- p(x)�
expresses universal quanti�cation over the elements of
collection. The binary operator `..' constructs a sequence
of values in increasing order from its �rst to its second
operand inclusive. Sequence indices range from zero to
one less than the length of the sequence.

The speci�cation is explicitly re�ned to an imple-
mentation, comprising three statements enclosed by via
and end. The �rst statement declares and initialises a
variable low that will in time contain the result. This is
followed by a loop statement that includes a declaration
of local variable high, three loop invariants, the termina-
tion condition, a loop variant (so that termination may
be veri�ed), and �nally a loop body. The let statement
in the body creates a local constant mid. The assertion
that follows not only documents the developer's expec-
tations but also introduces a lemma in the veri�cation
process, thereby easing the automated proof of some of
the veri�cation conditions. The keywords if and � en-
close guarded statement lists, with the empty guard `[]:'
meaning �else�. Finally, the value statement after the
end of the loop de�nes the return value.

For this example, Perfect Developer generates and
proves 27 veri�cation conditions, providing assurance that
the speci�cation is well-formed and the implementation
is correct.

David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development 7

// Find the index o f the f i r s t e lement in " t a b l e " t ha t i s g r ea t e r than or equa l to "x"
function search (t ab l e : seq of class X, x : X) : nat

require X has total operator ~~(arg) end
pre t ab l e . i sndec
sat is fy result <= #table ,

f o ra l l z : : 0 . . (result − 1) :− x > tab l e [z] ,
f o ra l l z : : result . . (# tab l e − 1) :− x <= tab l e [z]

via
// Implement wi th a b inary search
var low : nat ! = 0 ;
loop

var high : int ! = #tab l e ;
change low // loop frame
keep // loop i n v a r i an t s . . .

0 <= low ' <= high ' <= #table ,
f o ra l l z : : 0 . . (low '− 1) :− x > tab l e [z] ,
f o ra l l z : : high ' . . (# tab l e − 1) :− x <= tab l e [z]

until low ' = high ' // terminat ion cond i t i on
decrease high ' − low ' ; // loop var i an t

// S ta r t o f loop body
let mid ^= (low + high) / 2 ;
assert low <= mid < high ;
i f [x > tab l e [mid]] :
low ! = mid + 1 ;

[] :
high ! = mid ;

f i
end ;
value low ;

end ;

Listing 1. Implementation of a binary search algorithm

7 Modelling at multiple levels

Software systems need to be modelled at various levels
during development. In this section, we discuss some of
these levels and how they are represented in Perfect De-
veloper. Most of these sorts of model can be used to de-
scribe either a complete software system or a component
of a larger system. We will illustrate these various mod-
els with a small example. Suppose that a spell-checking
function is required for some application program, and
that we are required to construct a class to ful�l the
role of a dictionary of known words. We will assume the
required operations are:

� Build a new, empty dictionary;
� add a new word to the dictionary;
� remove an existing word from the dictionary;
� check whether a proposed word is in the dictionary,
returning true if it is and false otherwise.

We will impose the following requirements on these
operations:

� By an empty dictionary, we mean a dictionary for
which the check operation will return false for every
word;

� The add operation causes a subsequent check for the
word added to return true;

� The remove operation cause a subsequent check for
the word removed to return false;

� Neither add nor remove a�ects the result of calling
check for a word that is di�erent from the one added
or removed;

� If we use add to add a new word and then we immedi-
ately call remove with the same word, the dictionary
is unchanged as far as the client is concerned.

The last of these requirements is redundant, but is
a property that the client would expect to hold. Veri-
�cation of redundant requirements increases con�dence
that the remaining requirements have been correctly ex-
pressed. To make the speci�cation a little more interest-
ing, we will also constrain the client to only invoke add
with a word for which check returns false. Similarly, re-
move may only be called with a word for which check
returns true.

8 David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development

Fig. 1. UML class diagram for Dictionary

7.1 Structural model

This describes the overall structure of the software, the
way it interacts with the outside world, and the inter-
faces to its operations.

The Uni�ed Modeling Language (UML) does an ac-
ceptable job of representing this sort of model and we
saw no reason to develop an alternative notation within
Perfect Developer. Instead, we provide a mechanism for
importing UML models, providing a structural skeleton
in Perfect Developer notation on which detailed seman-
tics can be hung.

A UML class diagram for our dictionary component
might look like Fig. 1. If this is imported into Perfect De-
veloper, the skeleton shown in Listing 2 is constructed,
containing two class declarations. The Dictionary class

class Word ^= ? ;

class Dict ionary ^=
abstract

?
interface

function check (w: Word) : bool
^= ? ;

schema ! add (w: Word)
post ? ;

schema ! remove (w: Word)
post ? ;

build{}
post ? ;

end ;

Listing 2. Structural model

declaration includes skeletal method declarations. The
keyword schema introduces the declaration of a method
that changes the state, while the keyword build intro-
duces the declaration of a constructor for objects of the
class. The `?' symbol indicates places where semantic
detail needs to be added.

7.2 Behavioural model

This level corresponds to externally visible behaviour
that the software is expected to exhibit, including safety
properties and any conceivable tests that might be per-
formed together with their expected outcomes.

Perfect Developer provides three main mechanisms
for representing these behaviours. A property declara-
tion is a parameterised theorem that expresses an ex-
pected truth. A postassertion is a convenient way of ex-
pressing a required behaviour when that behaviour re-
lates mainly to a single method call. A ghost schema ex-
presses a usage scenario (typically involving a sequence
of method calls) and its postassertion expresses truths
that should be established in the �nal state.

Listing 3 shows how the skeleton created from the
UML model could be built upon to express some ex-
pected behaviours. The three postassertions correspond
to expectations we have about the e�ect of calling the
methods to which they are attached. These are: after
adding a word using the add method, a call to check
will assert that the word we added is now in the dictio-
nary; similarly, after calling the remove method, a call to
check reveals that the word removed is not in the dictio-
nary; and the constructor does indeed build an empty
dictionary in that for any word we choose, check does
not report that word as being present. The use of the
prime character in a postassertion indicates that we are
referring to the �nal value of the preceding variable.

We have added a ghost schema that states that if
a word not already present is added to the dictionary
and then removed from it, then to the outside observer
the dictionary is unchanged from its initial state. We
have also included a property declaration expressing the
notion that adding a new word to the dictionary does not
a�ect the result of a query involving a di�erent word.

7.3 State-based model

This is a more detailed model which provides an abstract
data model for each class and speci�cations of the meth-
ods in terms of this data. If we choose to use a set of
words as the abstract data model in our example, our
state-based model might look like Listing 4.

We have de�ned the Word class as a constrained
string (which is itself synonymous with the type seq

of char). The postconditions of the add and remove
schemas indicate the frame and the required state change.

At this point, the veri�er can be used to check that
the state-based model conforms to the behavioural model.
Perfect Developer generates 7 veri�cation conditions for
this example; the veri�er proves them all in less than a
second.

David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development 9

class Word ^= ? ;

class Dict ionary ^=
abstract

?
interface

// Check i f a word i s in the d i c t i ona r y
function check (w: Word) : bool
^= ? ;

// Bui ld an empty d i c t i ona r y
build{}

post ?
assert fora l l w:Word :−~ se l f ' . check (w) ;

// the d i c t i ona r y r e a l l y i s empty

// Add a word to the d i c t i ona r y
schema ! add (w: Word)

pre ~check (w)
post ?
assert se l f ' . check (w) ;

// w i s now in the d i c t i ona r y

// Remove a word from the d i c t i ona r y
schema ! remove (w: Word)

pre check (w)
post ?
assert ~se l f ' . check (w) ;

// w i s no longer inc luded

// I f we add a word and then remove i t ,
// we ge t the d i c t i ona r y we s t a r t e d wi th
ghost schema addThenRemove (w: Word)

pre ~check (w)
post ! add (w) then ! remove (w)
assert se l f ' = s e l f ;

// Adding a word does not a f f e c t whether
// a d i f f e r e n t word i s in the d i c t i ona r y
property (w1 , w2 : Word)

pre ~check (w1) , w1 ~= w2
assert (s e l f after i t ! add (w1))

. check (w2) = check (w2) ;
end ;

Listing 3. Behavioural model

7.4 Re�nement

In many cases, Perfect Developer can generate ready-to-
compile C++ or Java code of acceptable quality from
the state-based model by automatic re�nement. How-
ever, manual re�nement is sometimes needed, typically
in order to e�ect a more e�cient representation of the
data.

We will illustrate this by modifying our example to
use a more compact representation for the dictionary.
Observing that in the English language, the plural form
of most nouns can be obtained by appending the letter

class Word ^= those x : string :− ~x . empty ;

class Dict ionary ^=
abstract

var words : set of Word ;
interface

// Check i f a word i s in the d i c t i ona r y
function check (w: Word) : bool
^= w in words ;

// Bui ld an empty d i c t i ona r y
build{}

post words ! = set of Word{}
assert fora l l w:Word :−~ se l f ' . check (w) ;

// the d i c t i ona r y r e a l l y i s empty

// Add a word to the d i c t i ona r y
schema ! add (w: Word)

pre ~check (w)
post change words

sat is fy words '= words . append (w)
assert se l f ' . check (w) ;

// w i s now in the d i c t i ona r y

// Remove a word form the d i c t i ona r y
schema ! remove (w: Word)

pre check (w)
post change words

sat is fy words '= words . remove (w)
assert ~se l f ' . check (w) ;

// w i s no longer inc luded

// ghos t schemas and p r o p e r t i e s as b e f o r e
. . .

end ;

Listing 4. State-based model

`s' to the singular form, it seems pointless to represent
a pair of words like �computer� and �computers� as two
separate words. More e�cient use of memory is achieved
by storing just �computer� along with an indication that
appending the letter `s' yields another valid word.

To distinguish between words for which it is known
that appending `s' yields another word, and words for
which this is not known, we will store the former in a set
called specialWords and the latter in another set plain-
Words. Of course, from the point of view of the user
of the dictionary, �computer� and �computers� are two
separate words and will need to be added independently.

We can indicate a data re�nement by adding an in-

ternal section to the class (Listing 5). The `++' op-
erator indicates union when its operands are sets and
concatenation when its operands are sequences The `**'
operator indicates set intersection and the �for...yield�
construct is a set comprehension. The construct �x ++
"s" isWord� is parsed as �(x ++ "s") isWord� and nar-
rows the result of the `++' operation (which is of type

10 David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development

class Dict ionary ^=
abstract

var words : set of Word ;
internal

var plainWords , spec ia lWords : set of Word ;

// Ret r i eve func t i on
function words ^=

plainWords
++ specia lWords
++ (for x : : spec ia lWords

yield x ++ " s " i s Word) ;

invariant
// No word i s r epre sen t ed more than once
plainWords ** spec ia lWords

= set of Word{} ,
f o ra l l x : : spec ia lWords

:− x ++ " s " ~in plainWords ,
f o ra l l x : : spec ia lWords

:− x ++ " s " ~in specialWords ,

// A word and i t s p l u r a l shou ld not both
// be in plainWords , because s t o r i n g the
// word in specia lWords would save space
f o ra l l x : : plainWords

:− x ++ " s " ~in plainWords ;

interface
. . .

Listing 5. Data re�nement

string) to class Word (which we declared as a subtype
of string), so that the enclosing for...yield construct
yields �set of Word � rather than �set of string�. By re-
declaring the abstract variable words as a retrieve func-
tion (also called an abstraction function), we indicate
that the internal variables replace the abstract variable
rather than supplement it.

Having re�ned the data, we also need to re�ne the
class methods to use the new data. As in the previ-
ous example, this is accomplished by adding statement
lists enclosed by via...end. The check function and the
constructor are easily re�ned (Listing 6). Note that the
state-based speci�cation remains exactly as before; the
via...end blocks do not change the speci�cations, but in-
dicates how they are to be implemented. The front mem-
ber function of the seq of ... class yields the sequence
less the last element, while the last member function
yields its �nal element.

Suitable re�nements of the add and remove schemas
are shown in Listing 7. We use a conditional statement to
handle three separate cases that may arise. The seman-
tics of this statement is �if..then...elseif...then...else...�.
The syntax �v! = e� is a shorthand for �change v sat-

isfy v '= e� so that it has the e�ect of assignment. Al-
though this is a postcondition in the notation of Perfect

function check (w: Word) : bool
^= w in words
via

value w in plainWords
| w in spec ia lWords
| #w >= 2
& w. l a s t = ` s `
& w. f r on t in spec ia lWords

end ;

build{}
post words ! = set of Word{}
via

plainWords ! = set of Word{} ,
spec ia lWords ! = set of Word{}

end
assert fora l l x : Word :− ~se l f ' . check (x) ;

Listing 6. Re�nement of method check and constructor

Developer, the language syntax allows a postcondition to
be used where a statement is expected, with the obvious
meaning �satisfy this postcondition at this point!�.

Having re�ned the data and the methods that op-
erate on it, the veri�er can be asked to prove that the
re�nements satisfy the speci�cations and preserve the
invariants. For this example, Perfect Developer is able
to prove all 64 veri�cation conditions in less than one
minute on a modern personal computer.

8 Results and experience

Our research and development led to the Escher Tool be-
ing previewed in September 1999 at the World Congress
of Formal Methods and the commercial release of Perfect
Developer in July 2002.

Aside from academic examples, Perfect Developer has
been used to implement real-world systems including a
terminal emulator, part of an IT system for a government
department, and the Perfect Developer compiler/veri�er
itself. Some statistics from these projects are shown in
Table 1. When comparing the number of lines of spec-
i�cation and re�nement with the amount of generated
code, bear in mind that the lines of speci�cation and re-
�nement include comment lines, whereas the generated
C++ is uncommented except for a header comment.
Also, long expressions and statements in the generated
code are unformatted apart from line wrap at 120 char-
acters. The uncertainty in the �gures for the percentage
of true theorems proven automatically for two of the
projects re�ects the fact that we have not manually in-
vestigated each veri�cation failue to establish whether
the condition concerned is a true theorem. The �gures
for time per veri�cation condition attempted were ob-
tained on a PC with AMD 2800+ processor and 512Mb
memory.

David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development 11

schema ! add (w: Word)
pre ~check (w)
post change words sat is fy words '= words . append (w)
via

i f [#w >= 2 & w. l a s t = ` s ` & w. f r on t in plainWords] :
// word ends in ' s ' and root i s in d i c t i ona r y
plainWords ! = plainWords . remove (w. f r on t) ,
spec ia lWords ! = specia lWords . append (w. f r on t) ;

[w ++ " s " in plainWords] :
// the " p l u r a l " form of the word i s a l r eady in the d i c t i ona r y
plainWords ! = plainWords . remove (w ++ " s ") ,
spec ia lWords ! = specia lWords . append (w) ;

[] :
// no r e l a t e d word i s a l r eady in the d i c t i ona r y
plainWords ! = plainWords . append (w) ;

f i
end
assert se l f ' . check (w) ; // w i s now in the d i c t i ona r y

schema ! remove (w: Word)
pre check (w)
post words ! = words . remove (w)
via

i f [w in plainWords] :
// the s imple case

plainWords ! = plainWords . remove (w) ;
[w in spec ia lWords] :

// the " p l u r a l " form of w i s a l s o in the d i c t i ona r y
spec ia lWords ! = specia lWords . remove (w) ; // remove the word and i t s " p l u r a l "
! add (w ++ " s ") ; // add back the " p l u r a l "

[#w >= 2 & w. l a s t = ` s ` & w. f r on t in spec ia lWords] :
// word ends in ` s ` and i t s " s i n g l u l a r " form i s a l s o in the d i c t i ona r y
spec ia lWords ! = specia lWords . remove (w. f r on t) ;
! add (w. f r on t) ; // add back the " s i n gu l a r "

f i ;
end
assert ~se l f ' . check (w) ; // w i s no longer inc luded

Listing 7. Re�nement of methods add and remove

Project Terminal emulator Part of IT system Compiler/veri�er

Lines of speci�cation and re�nement 3192 13777 114720
Lines of generated C++ 6752 38858 229367
Number of veri�cation conditions 1349 2645 131441
% valid veri�cation conditions proved ≥ 98.6% 99.89% ≈ 96%
Average time per veri�cation condition 2.4 sec 3.7 sec 4.5 sec

Table 1. Three projects implemented in Perfect Developer

12 David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development

In all three projects, proof failures have highlighted
signi�cant problems. For the terminal emulator, an in-
consistency in the 5-year old protocol speci�cation doc-
ument was revealed; while a proof failure for the com-
piler/veri�er uncovered a language design �aw that, for
some inputs, would have resulted in the generated C++
failing to compile.

Although our automated re�nement technology is in
its early stages of development, we have found that man-
ual re�nement is only needed for a small proportion of
the classes in a system. For example, Perfect Developer
contains a compiler (which includes the re�nement and
code generation subsystems) and a veri�er. Despite the
fact that the compiler is constructed almost entirely us-
ing classes and methods for which no re�nement has been
manually written, it is able to compile and generate code
for the entire Escher Tool in only a few minutes (com-
pared with an hour or more needed to compile the result-
ing C++ code). This also reinforces our view that the
overhead associated with using value semantics in place
of reference semantics is not severe. The veri�er is more
heavily re�ned due to the processor-intensive nature of
automated reasoning; nevertheless, the majority of class
methods involved are not manually re�ned.

9 Limitations

One of the reasons behind the decision to implement
Perfect Developer in its own technology was to ensure
that the technology was scalable to large projects. In
consequence, we revised the notation several times dur-
ing development in response to issues that arose. We are
now con�dent that the notation is su�ciently expressive
to specify and implement a wide range of single-threaded
software systems.

Although we have constructed multithreaded pro-
grams using Perfect Developer, the notation is currently
unable to model concurrency, so desirable properties such
as absence of deadlock cannot be veri�ed or even ex-
pressed. Our main research is now directed towards adding
concurrency to the notation and extending the veri�er
to prove concurrency properties.

Full veri�cation of programs that use reference vari-
ables explicitly continues to be di�cult because of the
potential for aliasing. The problem is compounded when
inheritance and dynamic binding are used because it be-
comes necessary to extend the notion of behavioural sub-
typing to include anti-aliasing invariants.

Code generation is currently restricted to C++ and
Java. Ada 95 code generation is partially implemented,
however the Ada �with-ing� problem [16] prevents the
completion of this work pending a revision to the Ada
language to address this limitation.

When the veri�er fails to produce a proof of a veri�-
cation condition, Perfect Developer analyses the failure

and attempts to provide the user with helpful informa-
tion, to assist in tracking down the likely error. Although
the information produced is sometimes quite helpful, on
other occasions it is of little use. It might be more helpful
if the tool were to suggest �xes to the source. We note
that some work has already been done in this �eld [17]
in relation to ESC/Java.

10 Conclusions

We have shown that it is possible to develop a large, com-
plex program in reasonable time using an object-oriented
formal method; and that automated reasoning can now
be used to successfully prove a very high proportion of
the generated veri�cation conditions.

The construction of programs that are proven to con-
form to formal speci�cations is of little value if the spec-
i�cations do not ful�l user requirements. Some require-
ments are easy to capture and express as expected be-
haviours of the system and these can be formally veri�ed,
but other categories of requirements prove more elusive.
We are working with others who specialize in formal re-
quirements [18] to address this part of the development
process.

References

1. G. Smith, The Object-Z Speci�cation Language (Advances
in Formal Methods Series, Kluwer Academic Publishers,
2000).

2. E.H. Durr and N. Plat (editor), Afrodite (ESPRIT-
III project number 6500) document AFRO/CG/ED/LR-
M/V10 (Cap Volmac, 1995, in Dutch).

3. J. Spivey, The Z Notation: a Reference Manual (Prentice
Hall, 1992).

4. C. B. Jones, Systematic Software Development Using
VDM (Prentice Hall, Englewood Cli�s, NJ, USA, 1990).

5. J-R. Abrial, The B-Book: Assigning Programs to Mean-
ings (Cambridge University Press, 1996).

6. J. Barnes, High Integrity Ada: The SPARK Approach
(Addison-Wesley, Harlow, England 1997).

7. Barbara Liskov and Jeannette Wing, A behavioral notion
of subtyping, ACM TOPLAS 16(6) (1994) 1811-1841.

8. Bertrand Meyer, Object-Oriented Software Construction
(Prentice Hall, Englewood Cli�s, NJ, USA, 1988).

9. D. Crocker, Safe Object-Oriented Software: The Veri-
�ed Design-by-Contract Paradigm. In F. Redmill and T.
Anderson, Practical Elements of Safety: Proceedings of
the Twelfth Safety-Critical Systems Symposium (Springer-
Verlag, London, 2003) 19-41.

10. K. Rustan, M. Leino, Greg Nelson and James B. Saxe,
ESC/Java User's Manual (Technical Note 2000-002, Com-
paq Systems Research Center, 2000). Available via http:

//research.compaq.com/SRC/esc/.
11. Perfect Developer Language Reference Manual
(Escher Technologies Limited, 2002). Available at
http://www.eschertech.com/product_documentation/

LanguageReferenceManual.htm.

David Crocker and Judith Carlton: A High Productivity Tool for Formally Veri�ed Software Development 13

12. N. Evans and D. Crocker, Proof Obligations Gener-
ated by Perfect Developer 2.10 (Escher Technologies Lim-
ited, 2003). Available at http://www.eschertech.com/

product_documentation/ProofObligations.pdf.
13. A. Riazanov and A. Voronkov, Splitting without Back-
tracking, Preprint CSPP-10, University of Manchester
(2000).

14. J. Stark and A. Ireland, Invariant Discovery via Failed
Proof Attempts. In Proceedings of the 8th International
Workshop on Logic Programming Synthesis and Transfor-
mation (LNCS 1559, Springer-Verlag, 1998) 271-288.

15. A. Bundy, The use of explicit plans to guide proofs. In
Proceedings of CADE-9 (LNCS 310, Springer-Verlag 1998)
111-120.

16. J. Volan, John Volan's answers to Frequently Asked
Questions about the Ada �with-ing� Problem (1997). Avail-
able at http://www.eschertech.com/WithingProblem.

htm.
17. Cormac Flanagan, K. Rustan and M. Leino, Houdini, an
annotation assistant for ESC/Java (Technical Note 2000-
003, Compaq Systems Research Center, 2000). See http:

//research.compaq.com/SRC/esc/relatedTools.html.
18. J. Warren and R. Oldman, A Rigorous Speci�cation
Technique for High Quality Software. In F. Redmill and
T. Anderson, Practical Elements of Safety: Proceedings of
the Twelfth Safety-Critical Systems Symposium (Springer-
Verlag, London 2003) 43-65.

