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Perfect Developer (a.k.a. the Escher Tool) is a formal tool aimed at software 
development but with applications in the formal specification of other sorts of system. 
It is built around a notation for expressing state-based specifications and optionally 
refining them to a form resembling a program in an imperative programming 
language. In this sense, it is rather like the B method, or the combination of VDM-SL 
and VDM-IL. However, being a relatively recent entry to the field, it is designed 
around two technologies that matured long after VDM and B were designed: 

• Object oriented (O-O) and component-based design 

• Automated reasoning 

We based Perfect Developer around object-oriented design because that is the 
dominant paradigm used in industry today, but we recognise that not all problems 
benefit from an O-O approach. Furthermore, some features of O-O design are not yet 
accepted as safe by the developers of safety-critical systems. So while Perfect 
Developer does require use of two of the foundations of O-O design (abstraction and 
encapsulation), use of polymorphism and dynamic binding is discretionary and the 
use of objects obeying reference semantics is discouraged. 

Thus, Perfect Developer is based on the paradigm of classes that encapsulate data and 
methods that operate on that data, in the same way that B is based on the paradigm of 
abstract machines. 

Another advantage of using the O-O paradigm is that Perfect Developer can import 
UML models to generate skeleton specifications, on which detailed semantics can be 
hung. It can also generate ready-to-compile code in C++ or Java, which can be 
interfaced to graphical user interfaces or to other components written in those 
languages. 

In general, just the process of writing a formal specification is likely to improve the 
quality of a program written from it. Clearly, actually proving that the specification is 
consistent, and that it’s correctly implemented, is of greater value. From the 
commercial point of view, though, producing proofs by hand is far too time-
consuming. Even if an interactive theorem prover assists the user in constructing the 
proofs, the process is nowhere near fast enough for widespread commercial use. 

The second major technology underlying Perfect Developer is automated reasoning, 
and this helps solve the difficulties with commercial productivity.  

Automated reasoning technology has advanced in leaps and bounds during the last 
decade – particularly in the field of first-order theorem proving. We therefore 
designed the notation of Perfect Developer to give rise to verification conditions (or 
proof obligations) that are overwhelmingly first-order. Then we built a theorem 
prover, optimising it to handle real-life verification conditions, rather than the abstract 
mathematical theorems for which academic provers are designed. The result is that 
the tool is able to discharge more than 95% of valid verification conditions without 
user intervention in typical commercial applications - one real-life system has recently 
reached 99.89%. 



 
We tried to make the notation of Perfect Developer easy for software developers to 
learn, including those unused to formal methods or mathematical notation. Users who 
are already familiar with VDM or B should find it even easier. Those who are more 
used to Z need to get used to separating pre- and post-conditions. 

Further information about Perfect Developer can be found in [1], [2], [3] and [4]. 

An example: specifying and refining a queue 
Listing 1 shows a small example in which a bounded queue is specified as a Perfect 
class called Queue of X. The generic parameter X represents the type of element that 
will be stored. The abstract section of the class declares the abstract model of the 
data held by the queue, which in this case comprises a sequence of elements b and a 

Listing 1: Specification of a bounded queue 
 
final class Queue of X ^= 
abstract 
  var b: seq of X,      // the queue data 
      maxLen: nat > 0;  // maximum items in the queue 
 
  invariant #b <= maxLen; 
 
interface 
  function empty: bool   // test if the queue is empty 
    ^= #b = 0; 
 
  schema !add(x: X)      // add an element to the end of the queue 
    pre ~full 
    post b!= b.append(x); 
 
  function full: bool     // test if the queue is full 
    ^= #b = maxLen; 
 
  schema !remove(x!: out X)  // remove the head element 
    pre ~empty 
    post x! = b.head, 
         b! = b.tail; 
 
  build{!maxLen: nat, dummy: X}  // build an empty queue 
    pre maxLen ~= 0 
    post b! = seq of X{}; 
 
  ghost operator =(arg);  // we do not evaluate equality at run-time 
 
  // Verify that after adding an element, a queue is not empty 
  property (x: X) 
    pre ~full 
    assert ~(self after it!add(x)).empty; 
 

// Verify that if we add an element to an empty queue, 
// the next element we remove will be the one we added 

  ghost schema !addToEmptyThenRemove(e: X, r!: out X) 
    pre empty 
    post !add(e) then !remove(r!) 
    assert r' = e; 
 
end; 
 



fixed bound maxlen. The number of elements in b at any time cannot exceed maxlen 
and we declare this property as an invariant of the class (the unary # operator applied 
to a sequence yields its length). 

The interface section contains the declarations of operations available to users of a 
Queue. In this example we declare query functions empty and full, together with 
operations add and remove, and a constructor build for creating an empty queue. The 
symbol ^= used in the function declarations means “is defined as”. The keyword pre 
introduces a precondition, while post declares a schema postcondition. In Perfect, a 
postcondition either implicitly or explicitly includes a frame, thereby defining not 
only how the final values of changed variables relate to the initial conditions, but also 
requiring that other variables remain unchanged. For example, the assignment-like 
postcondition b! = b.append(x) is actually short for change b satisfy b’ = b.append(x) 
which states that the only variable affected is b and that its final value b’ must be 
equal to b.append(x). The append function is a predefined method of class seq of X 
and yields a new sequence comprising the original with the parameter appended. 

In order to improve confidence in the specification, we can also declare behavioural 
properties that we expect to hold. In this example we have declared some expected 
behaviour by declaring a property and a ghost schema. The property declaration 
asserts that immediately after calling the add method of a queue, the empty function 
should return false. The ghost schema describes the scenario of adding an element to 
an empty queue and then removing an element, and asserts that the element removed 
should be equal to the element added. 

When asked to verify this specification, Perfect Developer generates and proves 16 
verification conditions, assuring us that the specification is well-formed and 
consistent and that it exhibits the expected behaviour. 

Although the specification in Listing 1 can be used to generate code directly, in 
practice it is more efficient to implement a bounded queue using a ring buffer. Listing 
2 shows the same specification with refinement from the abstract model to an array 
ring together with head and tail indices hd and tl. The data refinement is declared in 
the internal section, together with the invariants that the sequence ring has fixed 
length and the two index variables are in range. By redeclaring the original abstract 
sequence b as a retrieve function, we indicate that it is not a stored variable in the 
implementation and we describe the value of b that is represented by any combination 
of values of ring, hd and tl that satisfy the invariant. In defining the retrieve function, 
we use a conditional expression, which has the form ( [guard1]: expression1, 
[guard2]: expression2) and has the meaning “if guard1 then expression1 else if 
guard2 then expression2”. The member function take(n) of class seq of X returns the 
first n elements of the sequence, while drop(n) returns all but the first n elements. The 
operator ++ applied to sequences denotes concatenation. 

Alongside this data refinement, the specifications of the public operations are refined 
to implementations in the via…end blocks. The implementations declare how the 
corresponding specifications should be implemented as operations on the ring buffer 
and associated head and tail variables. 

The refinement of the specification to a ring buffer implementation causes Perfect 
Developer to generate and prove an additional 34 verification conditions, which taken 
together show that the implementation is well-formed and faithfully implements the 
original specification. 



Listing 2: Implementation of the queue using a ring buffer 
 
final class Queue of X ^= 
abstract 
  var b: seq of X,      // the queue data 

  maxLen: nat > 0;  // maximum items in the queue 
 

  invariant #b <= maxLen; 
 
internal 
  var ring: seq of X,   // implement internally as a ring buffer 
      hd, tl: nat;      // indices of the first and last elements 
 
  invariant #ring = maxLen + 1, 
        hd < #ring, 
        tl < #ring; 
 
  function b ^=         // retrieve function for variable 'b' 
    (  [tl >= hd]:  ring.take(tl).drop(hd), 
       [tl < hd]:   ring.drop(hd) ++ ring.take(tl) 
    ); 
interface 
  function empty: bool  // test if the queue is empty 
    ^= #b = 0 
    via 
      value hd = tl 
    end; 
 
  schema !add(x: X)     // add an element to the end of the queue 
    pre ~full 
    post b! = b.append(x) 
    via 
      ring[tl]! = x,  tl! = (tl + 1)%(#ring) 
    end; 
 
  function full: bool   // test if the queue is full 
    ^= #b = maxLen 
    via 
      value (tl + 1)%(#ring) = hd 
    end; 
 
  schema !remove(x!: out X)  // remove the head element 
    pre ~empty 
    post x! = b.head, b! = b.tail 
    via 
      x! = ring[hd],  hd! = (hd + 1)%(#ring) 
    end; 
 
  build{!maxLen: nat, dummy: X}  // build an empty queue 
    pre maxLen ~= 0 
    post b! = seq of X{} 
    via 
      ring! = seq of X{dummy}.rep(maxLen + 1), 
      hd! = 0, tl! = 0 

end; 
 

  // Include property and ghost schemas here as before… 
   
end; 
 



Verifying security properties of the Mondex Abstract World 
At the recent Refinement Workshop, proof of the Z specification of the Mondex 
electronic purse [5] was discussed. As an exercise, a reformulation of the top level of 
this specification provided by Jim Woodcock was translated into Perfect and proven 
automatically. 

Listing 3 shows a revised version of this translation in which we have tried to mirror 
the Z original more closely. We declare classes to represent the contents of a purse, 
the details of a transfer, and the abstract world itself. As in the Z version, the 
collection of authorised purses is represented as a mapping from the names of purses 
to their contents. We have declared separate schemas AbTransferOkay, AbIgnore and 
AbTransferLost in the abstract world to represent each of the three possible outcomes 
of attempting a transfer between purses (i.e. the transfer may succeed, or be ignored, 
or the amount may be lost). 

A transfer attempt is represented by schema AbTransfer and its outcome is a 
nondeterministic choice between the other three schemas. The Z specification uses the 
schema disjunction operator to express this choice, but since in Perfect it is necessary 
to respect the schema preconditions, we use a conditional postcondition to select 
which of the three schemas may be invoked. The fact that AbTransfer is intentionally 
nondeterministic is flagged by declaring it opaque, and we again use the keyword 
opaque within the conditional postcondition, to indicate nondeterministic choice 
between those schemas whose guards are true, rather than deterministically choosing 
the first one whose guard is satisfied. The two security properties are expressed as 
post-assertions attached to schema AbTransfer. 

Of the 30 verification conditions generated and proved by Perfect Developer for this 
example, two represent the security properties; the remainder are precondition checks 
and domain checks. 

 

Listing 3: Abstract specification of Mondex electronic purse 
 
// Declare a type for identifying purses 
class NAME ^= tag;    // this creates a new abstract type called NAME 
 
// Class to represent a Mondex purse 
class AbPurse ^= 
abstract 
  var balance, lost: nat; 
interface 
  function balance, lost;    // this makes 'balance' and 'lost' 

                         // readable from outside the class 
 
  // Schema to represent an amount being lost from the purse 
  schema !lose(amt: nat) 
    pre amt <= balance 
    post balance!- amt, lost!+ amt; 
 
  // Schema to represent an amount being removed from the balance 
  schema !remove(amt: nat) 
    pre amt <= balance 

post balance!- amt; 
 

 



Listing 3 (continued) 
 
// Schema to represent an amount being added to the balance 
  schema !add(amt: nat) 
    post balance!+ amt; 
 
  // Constructor 
  build{} 
    post balance! = 0, lost! = 0; 
end; 
 
// Class to represent details of a proposed transfer between purses 
class TransferDetails ^= 
abstract 
  var frm, to: NAME,         // the 'from' and 'to' purses 
      val: nat;              // the amount of the transfer 
interface 
  function frm, to, val; 
 
  // Constructor 
  build{!frm, !to: NAME, !val: nat}; 
end; 
 
// Class to represent the abstract Mondex world 
class AbWorld ^= 
abstract 
  var AbAuthPurse: map of (NAME -> AbPurse); // the authorised purses 
 
  // Get the total balance of all authorised purses 
  function totalAbBalance: int 
    ^= + over (for x::AbAuthPurse.ranb yield x.balance); 
 
  // Get the total lost from all authorised purses 
  function totalAbLost: int 
    ^= + over (for x::AbAuthPurse.ranb yield x.lost); 
 
  // Determine whether a purse name is authentic 
  function Authentic(id: NAME): bool 
    ^= id in AbAuthPurse; 
 

// Determine whether the 'from' purse in a proposed transfer 
// has sufficient funds 

  function SufficientFundsProperty(details: TransferDetails): bool 
    pre Authentic(details.frm) 
        ^= details.val <= AbAuthPurse[details.frm].balance; 
 
  // Schema to represent a transfer attempt that is ignored 
  schema !AbIgnore(details: TransferDetails) 
    post pass; 
 

// Schema to represent a transfer attempt that results 
// in the amount being lost 

  schema !AbTransferLost(details: TransferDetails) 
    pre Authentic(details.frm), Authentic(details.to), 
      details.frm ~= details.to, 
      SufficientFundsProperty(details) 
    post change AbAuthPurse 
      satisfy AbAuthPurse' =  
        AbAuthPurse.replace(details.frm -> AbAuthPurse[details.frm] 
                                         after it!lose(details.val)); 



Listing 3 (continued) 
 
// Schema to represent a successful transfer 
  schema !AbTransferOkay(details: TransferDetails) 
    pre Authentic(details.frm), 
      Authentic(details.to), 
      details.frm ~= details.to, 
      SufficientFundsProperty(details) 
    post change AbAuthPurse 
      satisfy AbAuthPurse' =  
        AbAuthPurse.replace(details.frm -> AbAuthPurse[details.frm] 
                                        after it!remove(details.val)) 
                   .replace(details.to -> AbAuthPurse[details.to] 
                                        after it!add(details.val)); 
interface 
 

// Schema to represent a transfer attempt that may be successful, 
// ignored, or result in the amount concerned being lost 

  opaque schema !AbTransfer(details: TransferDetails) 
    post  

( opaque  // use nondeterministic guarded choice here to mimic 
          // the Z schema disjunction operator 

      [  Authentic(details.frm)  
       & Authentic(details.to)  
       & details.frm ~= details.to  
       & SufficientFundsProperty(details) 
      ]: 
        !AbTransferLost(details), 
      [  Authentic(details.frm)  
       & Authentic(details.to)  
       & details.frm ~= details.to  
       & SufficientFundsProperty(details) 
      ]: 
        !AbTransferOkay(details), 
      [true]: 
        !AbIgnore(details) 
    ) 
    // declare security properties 
    assert self'.totalAbBalance <= totalAbBalance, 
                 // no value created (Z: NoValueCreation) 
           self'.totalAbBalance + self'.totalAbLost  
               = totalAbBalance + totalAbLost;    
                 // all value accounted (Z: AllValueAccounted) 
 
  // Constructor 

build{!AbAuthPurse: map of (NAME -> AbPurse)}; 
 

end; 
 

 

Obtaining Perfect Developer 
Perfect Developer is free to evaluate, including use in small-scale student projects. 
Over 20 universities are using the tool in one way or another and six have purchased 
licences for classroom teaching or for research. For more information, please email 
info@eschertech.com. 
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