
Perfect Developer: what it is and what it does

by David Crocker and Judith Carlton, Escher Technologies Ltd.

Perfect Developer (a.k.a. the Escher Tool) is a formal tool aimed at software
development but with applications in the formal specification of other sorts of system.
It is built around a notation for expressing state-based specifications and optionally
refining them to a form resembling a program in an imperative programming
language. In this sense, it is rather like the B method, or the combination of VDM-SL
and VDM-IL. However, being a relatively recent entry to the field, it is designed
around two technologies that matured long after VDM and B were designed:

• Object oriented (O-O) and component-based design

• Automated reasoning

We based Perfect Developer around object-oriented design because that is the
dominant paradigm used in industry today, but we recognise that not all problems
benefit from an O-O approach. Furthermore, some features of O-O design are not yet
accepted as safe by the developers of safety-critical systems. So while Perfect
Developer does require use of two of the foundations of O-O design (abstraction and
encapsulation), use of polymorphism and dynamic binding is discretionary and the
use of objects obeying reference semantics is discouraged.

Thus, Perfect Developer is based on the paradigm of classes that encapsulate data and
methods that operate on that data, in the same way that B is based on the paradigm of
abstract machines.

Another advantage of using the O-O paradigm is that Perfect Developer can import
UML models to generate skeleton specifications, on which detailed semantics can be
hung. It can also generate ready-to-compile code in C++ or Java, which can be
interfaced to graphical user interfaces or to other components written in those
languages.

In general, just the process of writing a formal specification is likely to improve the
quality of a program written from it. Clearly, actually proving that the specification is
consistent, and that it’s correctly implemented, is of greater value. From the
commercial point of view, though, producing proofs by hand is far too time-
consuming. Even if an interactive theorem prover assists the user in constructing the
proofs, the process is nowhere near fast enough for widespread commercial use.

The second major technology underlying Perfect Developer is automated reasoning,
and this helps solve the difficulties with commercial productivity.

Automated reasoning technology has advanced in leaps and bounds during the last
decade – particularly in the field of first-order theorem proving. We therefore
designed the notation of Perfect Developer to give rise to verification conditions (or
proof obligations) that are overwhelmingly first-order. Then we built a theorem
prover, optimising it to handle real-life verification conditions, rather than the abstract
mathematical theorems for which academic provers are designed. The result is that
the tool is able to discharge more than 95% of valid verification conditions without
user intervention in typical commercial applications - one real-life system has recently
reached 99.89%.

We tried to make the notation of Perfect Developer easy for software developers to
learn, including those unused to formal methods or mathematical notation. Users who
are already familiar with VDM or B should find it even easier. Those who are more
used to Z need to get used to separating pre- and post-conditions.

Further information about Perfect Developer can be found in [1], [2], [3] and [4].

An example: specifying and refining a queue
Listing 1 shows a small example in which a bounded queue is specified as a Perfect
class called Queue of X. The generic parameter X represents the type of element that
will be stored. The abstract section of the class declares the abstract model of the
data held by the queue, which in this case comprises a sequence of elements b and a

Listing 1: Specification of a bounded queue

final class Queue of X ^=
abstract
 var b: seq of X, // the queue data
 maxLen: nat > 0; // maximum items in the queue

 invariant #b <= maxLen;

interface
 function empty: bool // test if the queue is empty
 ^= #b = 0;

 schema !add(x: X) // add an element to the end of the queue
 pre ~full
 post b!= b.append(x);

 function full: bool // test if the queue is full
 ^= #b = maxLen;

 schema !remove(x!: out X) // remove the head element
 pre ~empty
 post x! = b.head,
 b! = b.tail;

 build{!maxLen: nat, dummy: X} // build an empty queue
 pre maxLen ~= 0
 post b! = seq of X{};

 ghost operator =(arg); // we do not evaluate equality at run-time

 // Verify that after adding an element, a queue is not empty
 property (x: X)
 pre ~full
 assert ~(self after it!add(x)).empty;

// Verify that if we add an element to an empty queue,
// the next element we remove will be the one we added

 ghost schema !addToEmptyThenRemove(e: X, r!: out X)
 pre empty
 post !add(e) then !remove(r!)
 assert r' = e;

end;

fixed bound maxlen. The number of elements in b at any time cannot exceed maxlen
and we declare this property as an invariant of the class (the unary # operator applied
to a sequence yields its length).

The interface section contains the declarations of operations available to users of a
Queue. In this example we declare query functions empty and full, together with
operations add and remove, and a constructor build for creating an empty queue. The
symbol ^= used in the function declarations means “is defined as”. The keyword pre
introduces a precondition, while post declares a schema postcondition. In Perfect, a
postcondition either implicitly or explicitly includes a frame, thereby defining not
only how the final values of changed variables relate to the initial conditions, but also
requiring that other variables remain unchanged. For example, the assignment-like
postcondition b! = b.append(x) is actually short for change b satisfy b’ = b.append(x)
which states that the only variable affected is b and that its final value b’ must be
equal to b.append(x). The append function is a predefined method of class seq of X
and yields a new sequence comprising the original with the parameter appended.

In order to improve confidence in the specification, we can also declare behavioural
properties that we expect to hold. In this example we have declared some expected
behaviour by declaring a property and a ghost schema. The property declaration
asserts that immediately after calling the add method of a queue, the empty function
should return false. The ghost schema describes the scenario of adding an element to
an empty queue and then removing an element, and asserts that the element removed
should be equal to the element added.

When asked to verify this specification, Perfect Developer generates and proves 16
verification conditions, assuring us that the specification is well-formed and
consistent and that it exhibits the expected behaviour.

Although the specification in Listing 1 can be used to generate code directly, in
practice it is more efficient to implement a bounded queue using a ring buffer. Listing
2 shows the same specification with refinement from the abstract model to an array
ring together with head and tail indices hd and tl. The data refinement is declared in
the internal section, together with the invariants that the sequence ring has fixed
length and the two index variables are in range. By redeclaring the original abstract
sequence b as a retrieve function, we indicate that it is not a stored variable in the
implementation and we describe the value of b that is represented by any combination
of values of ring, hd and tl that satisfy the invariant. In defining the retrieve function,
we use a conditional expression, which has the form ([guard1]: expression1,
[guard2]: expression2) and has the meaning “if guard1 then expression1 else if
guard2 then expression2”. The member function take(n) of class seq of X returns the
first n elements of the sequence, while drop(n) returns all but the first n elements. The
operator ++ applied to sequences denotes concatenation.

Alongside this data refinement, the specifications of the public operations are refined
to implementations in the via…end blocks. The implementations declare how the
corresponding specifications should be implemented as operations on the ring buffer
and associated head and tail variables.

The refinement of the specification to a ring buffer implementation causes Perfect
Developer to generate and prove an additional 34 verification conditions, which taken
together show that the implementation is well-formed and faithfully implements the
original specification.

Listing 2: Implementation of the queue using a ring buffer

final class Queue of X ^=
abstract
 var b: seq of X, // the queue data

 maxLen: nat > 0; // maximum items in the queue

 invariant #b <= maxLen;

internal
 var ring: seq of X, // implement internally as a ring buffer
 hd, tl: nat; // indices of the first and last elements

 invariant #ring = maxLen + 1,
 hd < #ring,
 tl < #ring;

 function b ^= // retrieve function for variable 'b'
 ([tl >= hd]: ring.take(tl).drop(hd),
 [tl < hd]: ring.drop(hd) ++ ring.take(tl)
);
interface
 function empty: bool // test if the queue is empty
 ^= #b = 0
 via
 value hd = tl
 end;

 schema !add(x: X) // add an element to the end of the queue
 pre ~full
 post b! = b.append(x)
 via
 ring[tl]! = x, tl! = (tl + 1)%(#ring)
 end;

 function full: bool // test if the queue is full
 ^= #b = maxLen
 via
 value (tl + 1)%(#ring) = hd
 end;

 schema !remove(x!: out X) // remove the head element
 pre ~empty
 post x! = b.head, b! = b.tail
 via
 x! = ring[hd], hd! = (hd + 1)%(#ring)
 end;

 build{!maxLen: nat, dummy: X} // build an empty queue
 pre maxLen ~= 0
 post b! = seq of X{}
 via
 ring! = seq of X{dummy}.rep(maxLen + 1),
 hd! = 0, tl! = 0

end;

 // Include property and ghost schemas here as before…

end;

Verifying security properties of the Mondex Abstract World
At the recent Refinement Workshop, proof of the Z specification of the Mondex
electronic purse [5] was discussed. As an exercise, a reformulation of the top level of
this specification provided by Jim Woodcock was translated into Perfect and proven
automatically.

Listing 3 shows a revised version of this translation in which we have tried to mirror
the Z original more closely. We declare classes to represent the contents of a purse,
the details of a transfer, and the abstract world itself. As in the Z version, the
collection of authorised purses is represented as a mapping from the names of purses
to their contents. We have declared separate schemas AbTransferOkay, AbIgnore and
AbTransferLost in the abstract world to represent each of the three possible outcomes
of attempting a transfer between purses (i.e. the transfer may succeed, or be ignored,
or the amount may be lost).

A transfer attempt is represented by schema AbTransfer and its outcome is a
nondeterministic choice between the other three schemas. The Z specification uses the
schema disjunction operator to express this choice, but since in Perfect it is necessary
to respect the schema preconditions, we use a conditional postcondition to select
which of the three schemas may be invoked. The fact that AbTransfer is intentionally
nondeterministic is flagged by declaring it opaque, and we again use the keyword
opaque within the conditional postcondition, to indicate nondeterministic choice
between those schemas whose guards are true, rather than deterministically choosing
the first one whose guard is satisfied. The two security properties are expressed as
post-assertions attached to schema AbTransfer.

Of the 30 verification conditions generated and proved by Perfect Developer for this
example, two represent the security properties; the remainder are precondition checks
and domain checks.

Listing 3: Abstract specification of Mondex electronic purse

// Declare a type for identifying purses
class NAME ^= tag; // this creates a new abstract type called NAME

// Class to represent a Mondex purse
class AbPurse ^=
abstract
 var balance, lost: nat;
interface
 function balance, lost; // this makes 'balance' and 'lost'

 // readable from outside the class

 // Schema to represent an amount being lost from the purse
 schema !lose(amt: nat)
 pre amt <= balance
 post balance!- amt, lost!+ amt;

 // Schema to represent an amount being removed from the balance
 schema !remove(amt: nat)
 pre amt <= balance

post balance!- amt;

Listing 3 (continued)

// Schema to represent an amount being added to the balance
 schema !add(amt: nat)
 post balance!+ amt;

 // Constructor
 build{}
 post balance! = 0, lost! = 0;
end;

// Class to represent details of a proposed transfer between purses
class TransferDetails ^=
abstract
 var frm, to: NAME, // the 'from' and 'to' purses
 val: nat; // the amount of the transfer
interface
 function frm, to, val;

 // Constructor
 build{!frm, !to: NAME, !val: nat};
end;

// Class to represent the abstract Mondex world
class AbWorld ^=
abstract
 var AbAuthPurse: map of (NAME -> AbPurse); // the authorised purses

 // Get the total balance of all authorised purses
 function totalAbBalance: int
 ^= + over (for x::AbAuthPurse.ranb yield x.balance);

 // Get the total lost from all authorised purses
 function totalAbLost: int
 ^= + over (for x::AbAuthPurse.ranb yield x.lost);

 // Determine whether a purse name is authentic
 function Authentic(id: NAME): bool
 ^= id in AbAuthPurse;

// Determine whether the 'from' purse in a proposed transfer
// has sufficient funds

 function SufficientFundsProperty(details: TransferDetails): bool
 pre Authentic(details.frm)
 ^= details.val <= AbAuthPurse[details.frm].balance;

 // Schema to represent a transfer attempt that is ignored
 schema !AbIgnore(details: TransferDetails)
 post pass;

// Schema to represent a transfer attempt that results
// in the amount being lost

 schema !AbTransferLost(details: TransferDetails)
 pre Authentic(details.frm), Authentic(details.to),
 details.frm ~= details.to,
 SufficientFundsProperty(details)
 post change AbAuthPurse
 satisfy AbAuthPurse' =
 AbAuthPurse.replace(details.frm -> AbAuthPurse[details.frm]
 after it!lose(details.val));

Listing 3 (continued)

// Schema to represent a successful transfer
 schema !AbTransferOkay(details: TransferDetails)
 pre Authentic(details.frm),
 Authentic(details.to),
 details.frm ~= details.to,
 SufficientFundsProperty(details)
 post change AbAuthPurse
 satisfy AbAuthPurse' =
 AbAuthPurse.replace(details.frm -> AbAuthPurse[details.frm]
 after it!remove(details.val))
 .replace(details.to -> AbAuthPurse[details.to]
 after it!add(details.val));
interface

// Schema to represent a transfer attempt that may be successful,
// ignored, or result in the amount concerned being lost

 opaque schema !AbTransfer(details: TransferDetails)
 post

(opaque // use nondeterministic guarded choice here to mimic
 // the Z schema disjunction operator

 [Authentic(details.frm)
 & Authentic(details.to)
 & details.frm ~= details.to
 & SufficientFundsProperty(details)
]:
 !AbTransferLost(details),
 [Authentic(details.frm)
 & Authentic(details.to)
 & details.frm ~= details.to
 & SufficientFundsProperty(details)
]:
 !AbTransferOkay(details),
 [true]:
 !AbIgnore(details)
)
 // declare security properties
 assert self'.totalAbBalance <= totalAbBalance,
 // no value created (Z: NoValueCreation)
 self'.totalAbBalance + self'.totalAbLost
 = totalAbBalance + totalAbLost;
 // all value accounted (Z: AllValueAccounted)

 // Constructor

build{!AbAuthPurse: map of (NAME -> AbPurse)};

end;

Obtaining Perfect Developer
Perfect Developer is free to evaluate, including use in small-scale student projects.
Over 20 universities are using the tool in one way or another and six have purchased
licences for classroom teaching or for research. For more information, please email
info@eschertech.com.

References
1. Perfect Developer Language Reference Manual. Available at

http://www.eschertech.com/product_documentation/Language%20Reference/
language_reference.pdf, or online in HTML format via the Support section of
www.eschertech.com.

2. Proof Obligations Generated by Perfect Developer. Available at
http://www.eschertech.com/product_documentation/ProofObligations.pdf.

3. D. Crocker, Safe Object-Oriented Software: the Verified Design-by-Contract
paradigm. Proceedings of the Twelfth Safety-Critical Systems Symposium (ed.
F.Redmill & T.Anderson) 19-41, Springer-Verlag, London, 2004.

4. D. Crocker and J. Carlton, A High Productivity Tool for Formally Verified
Software Development. To be published in the International Journal on Software
Tools for Technology Transfer (Special Section on FME2003).

5. S. Stepney, D. Cooper and J. Woodcock, An Electronic Purse. Technical
Monograph PRG-126, Oxford University Computing Laboratory (July 2000).

End

