Perfect Developer:
A tool for Object-Oriented
Formal Specification and Refinement

David Crocker

Escher Technologies Ltd., Mallard House, Hillside Road,
Ash Vale, Aldershot GU12 5BJ, UK,
dcrocker@eschertech.com,

WWW home page: http://wuw.eschertech.com

Abstract. Perfect Developer is a formal methods tool for developing
specifications and refining them to code. High productivity is achieved
through the use of a push-button theorem prover using advanced au-
tomated reasoning technology. The tool can import UML models and
generates final code in Java or C++. It is being used both commercially
and for teaching formal methods in universities.

1 Introduction

Perfect Developer is a high-productivity software development tool for devel-
oping formal specifications and refining them to code. The tool uses advanced
automated reasoning to discharge almost all proof obligations without user inter-
vention. Advanced mathematical knowledge is not a pre-requisite, which means
that any developer fluent in an object-oriented language such as Java or C++
should be able to learn the notation.

A single notation is used to express functional requirements, specifications,
and code. Specifications can be verified against the requirements. They can then
be refined into code either manually (with verification) or, in many cases, auto-
matically. The final code is automatically translated into ready-to-compile Java
or C++.

Perfect Developer is of commercial interest primarily for safety-critical or
mission-critical applications, but its high productivity makes it suitable for non-
critical applications too. It is also used by several universities for teaching formal
methods to undergraduates and for research.

2 Outline of the tool and the language

The Perfect language has been designed to be accessible to software developers
with limited mathematical knowledge. It has the look and feel of an object-
oriented programming language but the power of a specification language (Fig.
1). Type-safety is a major consideration when developing critical systems and
the safety of the language is comparable with Ada in this respect.

"-?,-,' Multi-Edit - [C:%Projects’, Queue.pd] =10 x|

File Edit Search Wiew Text Project Macro Tools Window Tags WYes aAddon Help _|E||5|
FEH AT B AXRRE R o PBaBEEYSF
IE Queue.pd

I// Example of implementing & limited length gueue using & ring buffer -

final class Queue of X *=
abstract
var b: seq of X, A the quene data
waxlen: nat > 0; A4 the maximum length the gqueus is permitted to grow to

invariant #b <= maxlen:

internal
var ring: seq of i, A implement internally as 2 ring buffer
hd, tl: nat; S5 indices of the firsé and last elements of the buffer

invariant #ring = maxlen + 1,
hd < #ring,
tl < #ring;

function b *= AF retrieve function for variable 'b'
[[tl == hd]: ring.take (tl).dropihd),
[tl < hd]: ring.drop(hd) ++ ring. take(tl)
1
| interface ~
A 4 I I 3
|"C:'l,Projects'l,Queue.pd" Saved, |[1] Lidc:l Ins| Caps| MHurn | Rec | E] 4

Fig. 1. Source text

Each class is defined with an abstract data model and the class methods are
specified in terms of this model. If the abstract data model of a class is refined to
a more efficient implementation model, then in accordance with the principle of
encapsulation, the specification remains unaltered and the refinement is invisible
to clients of the class. Method specifications can be individually refined towards
code where necessary. Further information about the language can be found in
[1] and an introductory tutorial is available at [2].

The tool generates the proof obligations needed to establish that the require-
ments are well-formed, that the specifications are well-formed and satisfy the
requirements, and that the code is terminating and behaves according to the
specification.

The prover runs without user intervention. It attempts each proof obligations
and delivers either a proof (which can be output in either HTML or Tex format),
or a warning that a proof has not been found together with information to assist
in finding the likely error. For correct programs, typical percentages of proof
obligations successfully discharged are in the high nineties.

3 Using Perfect Developer

Perfect Developer runs on standard PCs running Windows or Linux. The inter-
face to the toolset is the Project Manager (Fig. 2). This module allows users

ﬁIZ:"-.,Prujects"-.,EHampIes.pdp - Perfect Developer - |E||5|
File Project Build Options Wiew Help

Dl@lnl IJava release configuration j @I g |§§IQ/|\/I|2I|.| QI ?IQIEI

—Files
C:\Projectz\BinarySearch.pd Add
C:\Projects\D ate.pd
C:\Projects\Dictiohany. pd
C:\ProjectshFactorial pd Create. .. |

C:\Proje Jueue. oo -
ANl ; i

C:\Projects\OuickSort. pd oo Remave |
Check
Werify
R

— Results Fmeve

Open unprawven file ! j‘

Vernfving file 'C:\ProjectshQueue.pd' ... i "

Generating proof obligations ... 36 proof obligations collected Froperties

Dizcharging proof obligations ... confirmed 36 (1005 confirmed)

81 seconds

Generating verification output filez ... 1 gecond
0 errorz, 0 warnings found.

PO: Job completed with no problems detected.

[
u of

| |Ready 4

Fig. 2. The Project Manager

to create projects, add files, edit files, import UML models, verify or build in-
dividual files or the whole project, view proofs, and generate a cross-reference.
The build process can be configured to compile the resulting Java or C++ code
automatically.

Proofs may be generated in HTML format for on-screen viewing or electronic
publishing (Fig. 3), or in Tex format where hard copy is needed.

4 Theoretical foundations

Perfect Developer was inspired by Floyd-Hoare logic and Dijkstra’s weakest-
precondition calculus [3]. It uses the design-by-contract approach to specifica-
tion of class methods, and the refinement approach to implementation. The
language has the power of first-order predicate calculus, plus a few higher-order
constructs. The mechanisms of pre-conditions, post-conditions, post-assertions,

; Proofs from file C:'Projects',Queue.pd - Microsoft Internet Explorer — | Dlll

J File Edit Wiew Favorites Tools Help ﬁ
J =Eack - = -) i | Qisearch [FFavorites {4History | B-S = -
Proof of obligation: Specification satisfied at end of implementation 2l
Obligation location: C\Projects\Cueue.pd (51,9)
Condition defined at: C'\Projects\Queue.pd (46,14)
To prove: (self' b = self b.tail) . & (' = self b.head)
Given: -1 < (-#self b + self maxLen), {-self maxlen + #self ring) = 1, 0 = {-self hd + #self nng), 0 < (-self il +
#self ring), ~self empty, self’ maslen = self maxLen, self' ring = self ning, self’ hd = {[{-{self hd ¥ #self ring) +
#self ring) = 1]: 0, []: (self hd % #self ring) + 1}, self' tl = self t], ' = self ring[self hd]
(Rewriter time: 0 3s, Prover time: 5. 2s)
Proof
[Take given term] _
F2.07 -1 < (-#([self hd = self t1]: self ring take(self 1) drop(self hd). [self tl = self hd]: self ring drop(self hd) ++
self ring take(self il}) + self maxlen)
— [eimplifn]
F2.107 -1 = (-#(-1 < (-self hd + self t)]: self ring drop(self hd) take(-self hd + self tl), [0 = (-self 1l + self hd)]:
self ring drop(self hd) ++ self ring take(self i) + self maxLen)
— [move guard outside expression]
F2.117-1={-([-1 < (-self hd + self tI})]: #self ring. drop(self hd) take{-self hd + self tl), [0 < (-self il + self hd)]:
#(self nng drop(self hd) ++ self ring take(self {I)}) + self. maxTen)
— [simplify]
F2.067 -1 = (-([-1 < (-self hd + self tl)]: -self hd + self 1], [0 = (-self tl + self hd)]: -self hd + #self ring + self iI)

<nlf rmawTent
<T | »

|@ Done ’_ l_ |E|‘ My Cormputer v

Fig. 3. Proof output

class invariants, recursion invariants, loop variants and invariants are all present.
Object-oriented features such as inheritance, polymorphism, and dynamic bind-
ing (dynamic dispatch) are handled by appropriate extensions to these mecha-
nisms, in conformance with the Liskov Substitution Principle.

The logic used is a many-sorted logic of partial functions, which in the prover
mostly reduces to a classical two-valued logic. There are additional inference rules
to handle polymorphism, dynamic binding, and other constructs that do not fall
within the framework of first order logic.

5 Applications

5.1 Teaching formal methods

Many universities today teach software development using Java and modeling
using UML. Perfect Developer fits well with such courses, since it has an object-
oriented basis, can import UML models, and generates code in Java (or C++).

Because it uses a fully automatic theorem prover, knowledge of proof tech-
niques is not required, so that Perfect Developer is accessible to students with
limited mathematical knowledge.

By generating ready-to-compile code, Perfect Developer provides a quick
route from writing the specification to running the program. This gives students
fast feedback on their work, helping to maintain student motivation.

5.2 Commercial software development

Unlike most other formal methods tools, Perfect Developer offers high produc-
tivity, thanks to its use of advanced automated reasoning in the prover. Many
specifications can be automatically refined to code, so that the amount of code
that has to be written is substantially reduced.

Correct use of Perfect Developer will eliminate debugging and re-testing ac-
tivity, leading to lower costs and shorter time-to-market. Unlike most other for-
mal methods tools, Perfect Developer does not require all its users to have ad-
vanced mathematical skills. It supports and encourages (but does not mandate)
object-oriented development.

It can be used to produce a functioning prototype quickly, which means that
a fully-functional model of the system can be rapidly constructed. This can be
demonstrated to users, to check that their requirements have been correctly
captured before large development costs have been incurred. Final code can be
generated in Java or C++, allowing easy integration with other components
written in those languages.

For aviation software development, Perfect Developer offers some additional
benefits. The NASA /FAA working party on Object Oriented Technology in Avi-
ation is producing a handbook which identifies and seeks to resolve safety and
DO-178B certification issues when using object oriented technology. Perfect De-
veloper operates very substantially in accordance with the guidance in the draft
handbook. In particular, dynamic binding is safely handled in accordance with
the Liskov Substitution Principle, using the Design By Contract approach. Trace-
ability from requirements to code is a major concern with applying the object-
oriented paradigm to aviation software development, but Perfect Developer’s
proof output contains all the information needed to establish traceability from
requirements to code.

References

1. Perfect Developer Language Reference Manual.
http://www.eschertech.com/product_documentation/lrm.htm

2. A Perfect Developer Tutorial.
http://www.eschertech.com/tutorial /contents.htm

3. A Discipline of Programming: Edsger W. Dijkstra. ISBN 013215871X

